860 resultados para Management-Development
Resumo:
Background: There is an increasing recognition that modelling and simulation can assist in the process of designing health care policies, strategies and operations. However, the current use is limited and answers to questions such as what methods to use and when remain somewhat underdeveloped. Aim. The aim of this study is to provide a mechanism for decision makers in health services planning and management to compare a broad range of modelling and simulation methods so that they can better select and use them or better commission relevant modelling and simulation work. Methods. This paper proposes a modelling and simulation method comparison and selection tool developed from a comprehensive literature review, the research team's extensive expertise and inputs from potential users. Twenty-eight different methods were identified, characterised by their relevance to different application areas, project life cycle stages, types of output and levels of insight, and four input resources required (time, money, knowledge and data). Results: The characterisation is presented in matrix forms to allow quick comparison and selection. This paper also highlights significant knowledge gaps in the existing literature when assessing the applicability of particular approaches to health services management, where modelling and simulation skills are scarce let alone money and time. Conclusions: A modelling and simulation method comparison and selection tool is developed to assist with the selection of methods appropriate to supporting specific decision making processes. In particular it addresses the issue of which method is most appropriate to which specific health services management problem, what the user might expect to be obtained from the method, and what is required to use the method. In summary, we believe the tool adds value to the scarce existing literature on methods comparison and selection. © 2011 Jun et al.
Resumo:
Established literature on new product development (NPD) management recognizes top management involvement (TMI) as one of the most critical success factors. With increasing pressure to sustain competitive advantage and growth, NPD activities remain the focus of close interest from top management in many organizations. TMI in the NPD domain is receiving increasing academic attention. Despite its criticality, there is no systematic review of the existing literature to inform and stimulate researchers in the field for further investigation. This paper introduces the current state of literature on TMI in NPD, synthesizes important findings, and identifies the gaps and deficiencies in this research stream. The contents of the selected articles, which investigated TMI in NPD, are analyzed based on the type of the study, level of analysis, research methodology, operationalization of TMI, and main findings. Additionally, other studies, which did not directly investigate TMI and support in NPD, but were sufficiently related, are briefly summarized. As a result of this detailed literature review, it can be stated that both exploratory and relational studies provide rich evidence on the critical role of top management in NPD. However, the identified gaps and deficiencies in this research stream call for a better theoretical understanding and well-defined constructs of TMI in the NPD domain for different levels of analysis for future studies.
Resumo:
Engineering changes (ECs) are essential in complex product development, and their management is a crucial discipline for engineering industries. Numerous methods have been developed to support EC management (ECM), of which the change prediction method (CPM) is one of the most established. This article contributes a requirements-based benchmarking approach to assess and improve existing methods. The CPM is selected to be improved. First, based on a comprehensive literature survey and insights from industrial case studies, a set of 25 requirements for change management methods are developed. Second, these requirements are used as benchmarking criteria to assess the CPM in comparison to seven other promising methods. Third, the best-in-class solutions for each requirement are investigated to draw improvement suggestions for the CPM. Finally, an enhanced ECM method which implements these improvements is presented. © 2013 © 2013 The Author(s). Published by Taylor & Francis.
Resumo:
Agenda 21, the 40-chapter action plan, agreed to by all nations participating in the 1992 Earth Summit represents an ambitious effort to provide policy guidance across the entire spectrum of environment, development, and social issues confronting mankind. In the area of oceans and coasts (Chapter 17 of Agenda 21), the Earth Summit underscored that the management of oceans and coasts should be ‘integrated in content and anticipatory in ambit.’ To assist those responsible for implementing the Earth Summit guidelines on ocean and coastal management, this article first reviews the fundamental shift in paradigm reflected in the Earth Summit agreements as well as the specific recommendations contained in Chapter 17. Next, the article examines the central concept of ‘integrated management,’ noting both its importance and its limits. A general or ‘synthesis’ model of ‘integrated coastal management’ is then presented, addressing such questions as management goals, what is being managed, where, how, and by whom. In a concluding section, methods are proposed whereby the general or ‘synthesis model’ can be tailored to diverse national contexts, involving varying physical, socio-economic, and political conditions.
Resumo:
The broad acceptance and collective commitment of countries to the tasks involved in the implementation of Agenda 21, Chapter 17, have profound implications vis-à-vis the interplay between coastal zone management (CZM) and national development planning (NDP). It appears that in many countries, CZM has evolved in isolation from the mainstream of national development processes. The paper examines various forms and elements for the effective integration of CZM into NDP.
Resumo:
Objective: To develop sedation, pain, and agitation quality measures using process control methodology and evaluate their properties in clinical practice. Design: A Sedation Quality Assessment Tool was developed and validated to capture data for 12-hour periods of nursing care. Domains included pain/discomfort and sedation-agitation behaviors; sedative, analgesic, and neuromuscular blocking drug administration; ventilation status; and conditions potentially justifying deep sedation. Predefined sedation-related adverse events were recorded daily. Using an iterative process, algorithms were developed to describe the proportion of care periods with poor limb relaxation, poor ventilator synchronization, unnecessary deep sedation, agitation, and an overall optimum sedation metric. Proportion charts described processes over time (2 monthly intervals) for each ICU. The numbers of patients treated between sedation-related adverse events were described with G charts. Automated algorithms generated charts for 12 months of sequential data. Mean values for each process were calculated, and variation within and between ICUs explored qualitatively. Setting: Eight Scottish ICUs over a 12-month period. Patients: Mechanically ventilated patients. Interventions: None. Measurements and Main Results: The Sedation Quality Assessment Tool agitation-sedation domains correlated with the Richmond Sedation Agitation Scale score (Spearman [rho] = 0.75) and were reliable in clinician-clinician (weighted kappa; [kappa] = 0.66) and clinician-researcher ([kappa] = 0.82) comparisons. The limb movement domain had fair correlation with Behavioral Pain Scale ([rho] = 0.24) and was reliable in clinician-clinician ([kappa] = 0.58) and clinician-researcher ([kappa] = 0.45) comparisons. Ventilator synchronization correlated with Behavioral Pain Scale ([rho] = 0.54), and reliability in clinician-clinician ([kappa] = 0.29) and clinician-researcher ([kappa] = 0.42) comparisons was fair-moderate. Eight hundred twenty-five patients were enrolled (range, 59-235 across ICUs), providing 12,385 care periods for evaluation (range 655-3,481 across ICUs). The mean proportion of care periods with each quality metric varied between ICUs: excessive sedation 12-38%; agitation 4-17%; poor relaxation 13-21%; poor ventilator synchronization 8-17%; and overall optimum sedation 45-70%. Mean adverse event intervals ranged from 1.5 to 10.3 patients treated. The quality measures appeared relatively stable during the observation period. Conclusions: Process control methodology can be used to simultaneously monitor multiple aspects of pain-sedation-agitation management within ICUs. Variation within and between ICUs could be used as triggers to explore practice variation, improve quality, and monitor this over time
Resumo:
Buildings consume 40% of Ireland's total annual energy translating to 3.5 billion (2004). The EPBD directive (effective January 2003) places an onus on all member states to rate the energy performance of all buildings in excess of 50m2. Energy and environmental performance management systems for residential buildings do not exist and consist of an ad-hoc integration of wired building management systems and Monitoring & Targeting systems for non-residential buildings. These systems are unsophisticated and do not easily lend themselves to cost effective retrofit or integration with other enterprise management systems. It is commonly agreed that a 15-40% reduction of building energy consumption is achievable by efficiently operating buildings when compared with typical practice. Existing research has identified that the level of information available to Building Managers with existing Building Management Systems and Environmental Monitoring Systems (BMS/EMS) is insufficient to perform the required performance based building assessment. The cost of installing additional sensors and meters is extremely high, primarily due to the estimated cost of wiring and the needed labour. From this perspective wireless sensor technology provides the capability to provide reliable sensor data at the required temporal and spatial granularity associated with building energy management. In this paper, a wireless sensor network mote hardware design and implementation is presented for a building energy management application. Appropriate sensors were selected and interfaced with the developed system based on user requirements to meet both the building monitoring and metering requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks associated with minimisation of energy consumption in the built environment and the development of appropriate Building information models(BIM)to enable the design and development of energy efficient spaces.
Resumo:
BACKGROUND: Integrated vector management (IVM) is increasingly being recommended as an option for sustainable malaria control. However, many malaria-endemic countries lack a policy framework to guide and promote the approach. The objective of the study was to assess knowledge and perceptions in relation to current malaria vector control policy and IVM in Uganda, and to make recommendations for consideration during future development of a specific IVM policy. METHODS: The study used a structured questionnaire to interview 34 individuals working at technical or policy-making levels in health, environment, agriculture and fisheries sectors. Specific questions on IVM focused on the following key elements of the approach: integration of chemical and non-chemical interventions of vector control; evidence-based decision making; inter-sectoral collaboration; capacity building; legislation; advocacy and community mobilization. RESULTS: All participants were familiar with the term IVM and knew various conventional malaria vector control (MVC) methods. Only 75% thought that Uganda had a MVC policy. Eighty percent (80%) felt there was inter-sectoral collaboration towards IVM, but that it was poor due to financial constraints, difficulties in involving all possible sectors and political differences. The health, environment and agricultural sectors were cited as key areas requiring cooperation in order for IVM to succeed. Sixty-seven percent (67%) of participants responded that communities were actively being involved in MVC, while 48% felt that the use of research results for evidence-based decision making was inadequate or poor. A majority of the participants felt that malaria research in Uganda was rarely used to facilitate policy changes. Suggestions by participants for formulation of specific and effective IVM policy included: revising the MVC policy and IVM-related policies in other sectors into a single, unified IVM policy and, using legislation to enforce IVM in development projects. CONCLUSION: Integrated management of malaria vectors in Uganda remains an underdeveloped component of malaria control policy. Cooperation between the health and other sectors needs strengthening and funding for MVC increased in order to develop and effectively implement an appropriate IVM policy. Continuous engagement of communities by government as well as monitoring and evaluation of vector control programmes will be crucial for sustaining IVM in the country.
Resumo:
Marine legislation is becoming more complex and marine ecosystem-based management is specified in national and regional legislative frameworks. Shelf-seas community and ecosystem models (hereafter termed ecosystem models) are central to the delivery of ecosystem-based management, but there is limited uptake and use of model products by decision makers in Europe and the UK in comparison with other countries. In this study, the challenges to the uptake and use of ecosystem models in support of marine environmental management are assessed using the UK capability as an example. The UK has a broad capability in marine ecosystem modelling, with at least 14 different models that support management, but few examples exist of ecosystem modelling that underpin policy or management decisions. To improve understanding of policy and management issues that can be addressed using ecosystem models, a workshop was convened that brought together advisors, assessors, biologists, social scientists, economists, modellers, statisticians, policy makers, and funders. Some policy requirements were identified that can be addressed without further model development including: attribution of environmental change to underlying drivers, integration of models and observations to develop more efficient monitoring programmes, assessment of indicator performance for different management goals, and the costs and benefit of legislation. Multi-model ensembles are being developed in cases where many models exist, but model structures are very diverse making a standardised approach of combining outputs a significant challenge, and there is a need for new methodologies for describing, analysing, and visualising uncertainties. A stronger link to social and economic systems is needed to increase the range of policy-related questions that can be addressed. It is also important to improve communication between policy and modelling communities so that there is a shared understanding of the strengths and limitations of ecosystem models.