924 resultados para Magnetic nano-particles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dyslipidemia accelerates vascular complications of diabetes. Nuclear magnetic resonance (NMR) analysis of lipoprotein subclasses is used to evaluate a mouse model of human familial hypercholesterolemia +/- streptozotocin (STZ)-induced diabetes. A double knockout (DKO) mouse (low-density lipoprotein receptor [LDLr] -/-; apolipoprotein B [apoB] mRNA editing catalytic polypeptide-1 [Apobec1] -/-) was studied. Wild-type (WT) and DKO mice received sham or STZ injections at age 7 weeks, yielding control (WT-C, DKO-C) and diabetic (WT-D, DKO-D) groups. Fasting serum was collected when the mice were killed (age 40 weeks) for Cholestech analysis (Cholestech Corp, Hayward, CA) and NMR lipoprotein subclass profile. By Cholestech, fasting triglyceride and total cholesterol increased in DKO-C versus WT-C. Diabetes further increased total cholesterol in DKO. High-density lipoprotein cholesterol (HDL-C) was similar among all groups. NMR revealed that LDL in all groups was present in a subclass the size of large human LDL and was increased 48-fold in DKO-C versus WT-C animals, but was unaffected by diabetes. HDL was found in a subclass equivalent to large human HDL, and was similar among groups. In conclusion, NMR analysis reveals lipoprotein subclass distributions and the effects of genetic modification and diabetes in mice, but lack of particles the size of human small LDL and small HDL may limit the relevance of the present animal model to human disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of nanostructured Ni-Zn ferrites Ni1-xZnxFe2O4 (x=0, 0.5 and 1) with a grain size from 24 to 65 nm have been prepared with a sol-gel method. The effect of composition and sintering temperature on morphology, magnetic properties, Curie temperature, specific heating rate at 295 kHz and hysteresis loss have been studied. The highest coercivity of 50 and 40 Oe, were obtained for NiFe2O4 and Ni0.5Zn0.5Fe2O4 samples with the grain size of 35 and 29 nm, respectively. The coercivity of Ni and Ni-Zn mixed ferrites decreased with temperature. The Bloch exponent was 1.5 for all samples. As the grain size increased, the Curie temperature of NiFe2O4 increased from 849 to 859 K. The highest saturation magnetization of 70 emu/g at 298 K and the highest specific heating rate of 1.6 K/s under radiofrequency heating at 295 kHz were observed over NiFe2O4 calcined at 1073 K. Both the magnitude of the hysteresis loss and the temperature dependence of the loss are influenced by the sintering temperature and composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have established that some of the wear damage seen on cast CoCrMo joint surface is caused by entrained third-body hard particles. In this study, wet-cell micro-indentation and nano-scratch tests have been carried out with the direct aim of simulating wear damage induced by single abrasive particles entrained between the surfaces of cast CoCrMo hip implants. In situ electrochemical current noise measurements were uniquely performed to detect and study the wear-induced corrosion as well as the repassivation kinetics under the micro-/nano-scale tribological process. A mathematical model has been explored for the CoCrMo repassivation kinetics after surface oxide film rupture. Greater insights into the nature of the CoCrMo micro-/nano-scale wear-corrosion mechanisms and deformation processes are determined, including the identification of slip band formation, matrix/carbide deformation, nanocrystalline structure formation and strain-induced phase transformation. The electrochemical current noise provides evidence of instantaneous transient corrosion activity at the wearing surface resulting from partial oxide rupturing and stripping, concurrent with the indent/scratch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proliferation of mobile devices in society accessing data via the ‘cloud’ is imposing a dramatic increase in the amount of information to be stored on hard disk drives (HDD) used in servers. Forecasts are that areal densities will need to increase by as much as 35% compound per annum and by 2020 cloud storage capacity will be around 7 zettabytes corresponding to areal densities of 2 Tb/in2. This requires increased performance from the magnetic pole of the electromagnetic writer in the read/write head in the HDD. Current state-of-art writing is undertaken by morphologically complex magnetic pole of sub 100 nm dimensions, in an environment of engineered magnetic shields and it needs to deliver strong directional magnetic field to areas on the recording media around 50 nm x 13 nm. This points to the need for a method to perform direct quantitative measurements of the magnetic field generated by the write pole at the nanometer scale. Here we report on the complete in situ quantitative mapping of the magnetic field generated by a functioning write pole in operation using electron holography. Opportunistically, it points the way towards a new nanoscale magnetic field source to further develop in situ Transmission Electron Microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a radiation source based on a magnetic mirror cavity. Relativistic electrons are simulated entering the cavity and their trajectories and resulting emission spectra are calculated. The uniformity of the particle orbits is found to result in a frequency comb in terahertz range, the precise energies of which are tunable by varying the electron's gamma-factor. For very high energy particles, radiation friction causes the spectral harmonics to broaden and we suggest this as a possible way to verify competing classical equations of motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a detailed study of the use of a non-parallel, inhomogeneous magnetic field spectrometer for the investigation of laser-accelerated ion beams. Employing a wedged yoke design, we demonstrate the feasibility of an in-situ self-calibration technique of the non-uniform magnetic field and show that high-precision measurements of ion energies are possible in a wide-angle configuration. We also discuss the implications of a stacked detector system for unambiguous identification of different ion species present in the ion beam and explore the feasibility of detection of high energy particles beyond 100 MeV/amu in radiation harsh environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Dyslipidemia has been linked to vascular complications of Type 1 diabetes (T1DM). We investigated the prospective associations of nuclear magnetic resonance-determined lipoprotein subclass profiles (NMR-LSP) and conventional lipid profiles with carotid intima-media thickness (IMT) in T1DM.

METHODS: NMR-LSP and conventional lipids were measured in a subset of Diabetes Control and Complications Trial (DCCT) participants (n = 455) at study entry ('baseline', 1983-89), and were related to carotid IMT determined by ultrasonography during the observational follow-up of the DCCT, the Epidemiology of Diabetes Interventions and Complications (EDIC) study, at EDIC Year 12 (2004-2006). Associations were defined using multiple linear regression stratified by gender, and following adjustment for HbA1c, diabetes duration, body mass index, albuminuria, DCCT randomization group, smoking status, statin use, and ultrasound devices.

RESULTS: In men, significant positive associations were observed between some baseline NMR-subclasses of LDL (total IDL/LDL and large LDL) and common and/or internal carotid IMT, and between conventional total- and LDL-cholesterol and non-HDL-cholesterol and common carotid IMT, at EDIC Year 12; these persisted in adjusted analyses (p < 0.05). Large LDL particles and conventional triglycerides were positively associated with common carotid IMT changes over 12 years (p < 0.05). Inverse associations of mean HDL diameter and large HDL concentrations, and positive associations of small LDL with common and/or internal carotid IMT (all p < 0.05) were found, but did not persist in adjusted analyses. No significant associations were observed in women.

CONCLUSION: NMR-LSP-derived LDL particles, in addition to conventional lipid profiles, may help in identifying men with T1DM at highest risk for vascular disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O objectivo geral desta tese foi investigar diversas estratégias de síntese de nanocompósitos híbridos de matriz polimérica, contendo nanopartículas inorgânicas com funcionalidades diversas. O interesse nestes nanocompósitos multifuncionais consiste no enorme potencial que apresentam para novas aplicações tecnológicas, tais como em optoelectrónica ou em medicina. No capítulo introdutório, apresenta-se uma revisão das propriedades de nanopartículas inorgânicas e nanoestruturas obtidas a partir destas, métodos de preparação e de modificação química superficial, incluindo a formação de nanocompósitos poliméricos, bem como a aplicação destas nanoestruturas em medicina e biologia. O estudo das propriedades de nanopartículas de ouro é um importante tema em Nanociência e Nanotecnologia. As propriedades singulares destas NPs apresentam uma estreita relação com o tamanho, morfologia, arranjo espacial e propriedades dieléctricas do meio circundante. No capítulo 2, é reportada a preparação de nanocompósitos utilizando miniemulsões de poli-estireno (PS) e poli-acrilato de butilo (PBA) contendo nanopartículas de ouro revestidas com moléculas orgânicas. As propriedades ópticas destas estruturas híbridas são dominadas por efeitos plasmónicos e dependem de uma forma crítica na morfologia final dos nanocompósitos. Em particular, demonstra-se aqui a possibilidade de ajustar a resposta óptica, na região do visível do espectro, através do arranjo das nanopartículas na matriz polimérica, e consequentemente o acoplamento plasmónico, utilizando nanopartículas resultantes da mesma síntese. Na generalidade, é reportada aqui uma estratégia alternativa para modificar a resposta óptica de nanocompósitos, através do controlo da morfologia do compósito final face à estratégia mais comum que envolve o controlo das características morfológicas das partículas metálicas utilizadas como materiais de partida. No Capítulo 3 apresentam-se os resultados da preparação de vários compósitos poliméricos com propriedades magnéticas de interesse prático. Em particular discute-se a síntese e propriedades magnéticas de nanopartículas de ligas metálicas de cobalto-platina (CoPt3) e ferro-platina (FePt3), assim como de óxidos de ferro (magnetite Fe3O4 e maguemite g-Fe2O3) e respectivos nanocompósitos poliméricos. A estratégia aqui descrita constitui uma via interessante de desenvolver materiais nanocompósitos com potencial aplicação em ensaios de análise de entidades biológicas in vitro, que pode ser estendido a outros materiais magnéticos. Como prova de conceito, demonstrase a bioconjugação de nanocompósitos de CoPt3/PtBA com anticorpos IgG de bovino. No capítulo 4 é descrita a preparação e propriedades ópticas de pontos quânticos (“quantum dots”, QDs) de CdSe/ZnS assim como dos seus materiais nanocompósitos poliméricos, CdSe/ZnS-PBA. Como resultado das suas propriedades ópticas singulares, os QDs têm sido extensivamente investigados como materiais inorgânicos para aplicações em dispositivos ópticos. A incorporação de QDs em matrizes poliméricas é de particular interesse, nomeadamente devido ao comportamento óptico do nanocompósito final parecer estar dependente do tipo de polímero utilizado. As propriedades ópticas dos nanocompósitos foram estudadas sistematicamente por medidas de fotoluminescência. Os nanocompósitos apresentam propriedades interessantes para potenciais aplicações biológicas em diagnóstico in vitro, funcionando como sondas biológicas luminescentes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neste trabalho foram produzidos nanocompósitos de AlSiC misturando alumínio puro com nano partículas de SiC com diâmetro de 45 – 55 nm, usando, de forma sequencial, a técnica da metalurgia do pó e a compactação por “ Spark Plasma Sintering”. O compósito obtido apresentava grãos com 100 nm de diâmetro, encontrandose as partículas de SiC localizadas, principalmente, nas fronteiras de grão. O nanocompósito sob a forma de provetes cilíndricos foi submetido a testes de compressão uniaxial e a testes de nanoindentação para analisar a influência das nanopartículas de SiC, da fração volúmica de ácido esteárico e do tempo de moagem, nas propriedades mecânicas do material. Para efeitos de comparação, utilizouse o comportamento mecânico do Al puro processado em condições similares e da liga de alumínio AA1050O. A tensão limite de elasticidade do nanocompósito com 1% Vol./Vol. de SiC é dez vezes superior à do AA1050. O refinamento de grão à escala nano constitui o principal mecanismo de aumento de resistência mecânica. Na realidade, o Al nanocristalino sem reforço de partículas de SiC, apresenta uma tensão limite de elasticidade sete vezes superior à da liga AA1050O. A adição de 0,5 % Vol./Vol. e de 1 % Vol./Vol. de SiC conduzem, respetivamente, ao aumento da tensão limite de elasticidade em 47 % e 50%. O aumento do tempo de moagem e a adição de ácido esteárico ao pó durante a moagem conduzem apenas a um pequeno aumento da tensão de escoamento. A dureza do material medida através de testes de nanoindentação confirmaram os dados anteriores. A estabilidade das microestruturas do alumínio puro e do nanocompósito AlSiC, foi testada através de recozimento de restauração realizado às temperaturas de 150 °C e 250 °C durante 2 horas. Aparentemente, o tratamento térmico não influenciou as propriedades mecânicas dos materiais, excepto do nanocompósito com 1 % Vol./Vol. de SiC restaurado à temperatura de 250 °C, para o qual se observou uma redução da tensão limite de elasticidade na ordem dos 13 %. No alumínio nanocristalino, a tensão de escoamento é controlada pelo efeito de HallPetch. As partículas de SiC, são segregadas pelas fronteiras do grão e não contribuem para o aumento de resistência mecânica segundo o mecanismo de Orowan. Alternativamente, as nanopartículas de SiC constituem um reforço das fronteiras do grão, impedindo o seu escorregamento e estabilizando a nanoestrutura. Deste modo, as propriedades mecânicas do alumínio nanocristalino e do nanocompósito de AlSiC poderão estar relacionadas com a facilidade ou dificuldade do escorregamento das fronteiras de grão, embora não seja apresentada prova explícita deste mecanismo à temperatura ambiente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is about the combination of functional ferroelectric oxides with Multiwall Carbon Nanotubes for microelectronic applications, as for example potential 3 Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Miniaturized electronics are ubiquitous now. The drive to downsize electronics has been spurred by needs of more performance into smaller packages at lower costs. But the trend of electronics miniaturization challenges board assembly materials, processes, and reliability. Semiconductor device and integrated circuit technology, coupled with its associated electronic packaging, forms the backbone of high-performance miniaturized electronic systems. However, as size decreases and functionalization increases in the modern electronics further size reduction is getting difficult; below a size limit the signal reliability and device performance deteriorate. Hence miniaturization of siliconbased electronics has limitations. On this background the Road Map for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, designated as More than Moore; being one of them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. CNTs with their unique performance and three dimensionality at the nano-scale have been regarded as promising elements for miniaturized electronics [2]. CNTs are tubular in geometry and possess a unique set of properties, including ballistic electron transportation and a huge current caring capacity, which make them of great interest for future microelectronics [2]. Indeed CNTs might have a key role in the miniaturization of Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Moving from a traditional two dimensional (2D) design (as is the case of thin films) to a 3D structure (based on a tridimensional arrangement of unidimensional structures) will result in the high reliability and sensing of the signals due to the large contribution from the bottom electrode. One way to achieve this 3D design is by using CNTs. Ferroelectrics (FE) are spontaneously polarized and can have high dielectric constants and interesting pyroelectric, piezoelectric, and electrooptic properties, being a key application of FE electronic memories. However, combining CNTs with FE functional oxides is challenging. It starts with materials compatibility, since crystallization temperature of FE and oxidation temperature of CNTs may overlap. In this case low temperature processing of FE is fundamental. Within this context in this work a systematic study on the fabrication of CNTs - FE structures using low cost low temperature methods was carried out. The FE under study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate (BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in presence of MWCNTs and interfaces between the CNTs/FE are addressed in this work. The ferroelectric response locally measured by Piezoresponse Force Microscopy (PFM) clearly evidenced that even at low processing temperatures FE on CNTs retain its ferroelectric nature. The work started by verifying the thermal decomposition behavior under different conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non isothermal conditions, but morphology changes were observed for isothermal conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy (TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 ºC with a minimum sublimation. The activation energy for the decomposition of MWCNTs in air was calculated to lie between 80 and 108 kJ/mol. These results are relevant for the fabrication of MWCNTs – FE structures. Indeed we demonstrate that PZT can be deposited by sol gel at low temperatures on MWCNTs. And particularly interesting we prove that MWCNTs decrease the temperature and time for formation of PZT by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised at 500 ºC for 1 h was proved by PFM. In the continuation of this work we developed a low cost methodology of coating MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as a proof of concept was BT. BT is a well-known lead free perovskite used in many microelectronic applications. However, synthesis by solid state reaction is typically performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT structures are ferroelectric and exhibit an electromechanical response (15 pm/V). These results have broad implications since this strategy can also be extended to other compounds of materials with high crystallization temperatures. In addition the coverage of MWCNTs with FE can be optimized, in this case with non covalent functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). MWCNTs were used as templates to grow, in this case single phase multiferroic BFO nanorods. This work shows that the use of nitric solvent results in severe damages of the MWCNTs layers that results in the early oxidation of the tubes during the annealing treatment. It was also observed that the use of nitric solvent results in the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) of the nitric solution. The opening of the caps and filling of the tubes occurs simultaneously during the refluxing step. Furthermore we verified that MWCNTs have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs during the annealing process causes an oxygen deficient atmosphere that restrains the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of the obtained BFO nano structures indicates that MWCNTs act as template to grow 1D structure of BFO. Magnetic measurements on these BFO nanostructures revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 K. We also exploited the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by PFM. A week ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe. Our systematic work is a significant step forward in the development of 3D memory cells; it clearly demonstrates that CNTs can be combined with FE oxides and can be used, for example, as the next 3D generation of FERAMs, not excluding however other different applications in microelectronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We developed a nanoparticles (NPs) library from poly(ethylene glycol)–poly lactic acid comb-like polymers with variable amount of PEG. Curcumin was encapsulated in the NPs with a view to develop a delivery platform to treat diseases involving oxidative stress affecting the CNS. We observed a sharp decrease in size between 15 and 20% w/w of PEG which corresponds to a transition from a large solid particle structure to a “micelle-like” or “polymer nano-aggregate” structure. Drug loading, loading efficacy and release kinetics were determined. The diffusion coefficients of curcumin in NPs were determined using a mathematical modeling. The higher diffusion was observed for solid particles compared to “polymer nano-aggregate” particles. NPs did not present any significant toxicity when tested in vitro on a neuronal cell line. Moreover, the ability of NPs carrying curcumin to prevent oxidative stress was evidenced and linked to polymer architecture and NPs organization. Our study showed the intimate relationship between the polymer architecture and the biophysical properties of the resulting NPs and sheds light on new approaches to design efficient NP-based drug carriers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current water treatment technology is oriented towards the removal of contaminants, mostly organic compounds, by activated carbon. Activated carbons are classified as Granular Activated Carbons (GAC) and Powdered Activated Carbons (PAC) on the basis of the particle size of the carbon granules. Powdered carbons are generally less expensive than granular carbon, operating costs with powdered carbon could be lower. Though powdered activated carbon has many advantages over granular carbon, its application in large-scale separation process is limited by difficulty in recovery and regeneration. Deposition of magnetic iron oxide on carbon particles provides a convenient way of recovering the spent carbon from process water. The study deals with the preparation and physico-chemical characterization of magnetic iron oxide loaded activated carbons. The evaluation of absorption properties of magnetic iron oxide loaded activated carbon composites. The target molecules studied were phenol, p-nitro phenol and methylene blue. The feasibility of magnetic separation of iron oxide loaded activated carbons were studied and described in this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fine magnetic particles (size≅100 Å) belonging to the series ZnxFe1−xFe2O4 were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology