611 resultados para MPEG
Resumo:
The analysis of research data plays a key role in data-driven areas of science. Varieties of mixed research data sets exist and scientists aim to derive or validate hypotheses to find undiscovered knowledge. Many analysis techniques identify relations of an entire dataset only. This may level the characteristic behavior of different subgroups in the data. Like automatic subspace clustering, we aim at identifying interesting subgroups and attribute sets. We present a visual-interactive system that supports scientists to explore interesting relations between aggregated bins of multivariate attributes in mixed data sets. The abstraction of data to bins enables the application of statistical dependency tests as the measure of interestingness. An overview matrix view shows all attributes, ranked with respect to the interestingness of bins. Complementary, a node-link view reveals multivariate bin relations by positioning dependent bins close to each other. The system supports information drill-down based on both expert knowledge and algorithmic support. Finally, visual-interactive subset clustering assigns multivariate bin relations to groups. A list-based cluster result representation enables the scientist to communicate multivariate findings at a glance. We demonstrate the applicability of the system with two case studies from the earth observation domain and the prostate cancer research domain. In both cases, the system enabled us to identify the most interesting multivariate bin relations, to validate already published results, and, moreover, to discover unexpected relations.
Resumo:
Scientific background: Marine mammals use sound for communication, navigation and prey detection. Acoustic sensors therefore allow the detection of marine mammals, even during polar winter months, when restricted visibility prohibits visual sightings. The animals are surrounded by a permanent natural soundscape, which, in polar waters, is mainly dominated by the movement of ice. In addition to the detection of marine mammals, acoustic long-term recordings provide information on intensity and temporal variability of characteristic natural and anthropogenic background sounds, as well as their influence on the vocalization of marine mammals Scientific objectives: The PerenniAL Acoustic Observatory in the Antarctic Ocean (PALAOA, Hawaiian "whale") near Neumayer Station is intended to record the underwater soundscape in the vicinity of the shelf ice edge over the duration of several years. These long-term recordings will allow studying the acoustic repertoire of whales and seals continuously in an environment almost undisturbed by humans. The data will be analyzed to (1) register species specific vocalizations, (2) infer the approximate number of animals inside the measuring range, (3) calculate their movements relative to the observatory, and (4) examine possible effects of the sporadic shipping traffic on the acoustic and locomotive behaviour of marine mammals. The data, which are largely free of anthropogenic noise, provide also a base to set up passive acoustic mitigation systems used on research vessels. Noise-free bioacoustic data thereby represent the foundation for the development of automatic pattern recognition procedures in the presence of interfering sounds, e.g. propeller noise.
Resumo:
En el presente proyecto se realiza un estudio para la construcción de una cabecera de televisión por cable. Se trata de un proyecto puramente teórico en el que se especifican cada una de las partes que forman una cabecera de televisión y cómo funciona cada una de ellas. En un principio, se sitúa la cabecera de televisión dentro de una plataforma general de transmisión, para indicar sus funciones. Posteriormente, se analizan las distintas tecnologías que implementan esta transmisión y los estándares DVB que las rigen, como son DVB-C y DVB-C2 para las transmisiones por cable propiamente dichas y DVB-IPTV para las transmisiones por IP, para elegir cuál de las opciones es la más acertada y adaptar la cabecera de televisión a la misma. En cuanto al desarrollo teórico de la cabecera, se estudia el proceso que sigue la señal dentro de la misma, desde la recepción de los canales hasta el envío de los mismos hacia los hogares de los distintos usuarios, pasando previamente por las etapas de codificación y multiplexación. Además, se especifican los equipos necesarios para el correcto funcionamiento de cada una de las etapas. En la recepción, se reciben los canales por cada uno de los medios posibles (satélite, cable, TDT y estudio), que son demodulados y decodificados por el receptor. A continuación, son codificados (en este proyecto en MPEG-2 o H.264) para posteriormente ser multiplexados. En la etapa de multiplexación, se forma una trama Transport Stream por cada canal, compuesta por su flujo de video, audio y datos. Estos datos se trata de una serie de tablas (SI y PSI) que guían al set-topbox del usuario en la decodificación de los programas (tablas PSI) y que proporcionan información de cada uno de los mismos y del sistema (tablas SI). Con estas últimas el decodificador forma la EPG. Posteriormente, se realiza una segunda multiplexación, de forma que se incluyen múltiples programas en una sola trama Transport Stream (MPTS). Estos MPTS son los flujos que les son enviados a cada uno de los usuarios. El mecanismo de transmisión es de dos tipos en función del contenido y los destinatarios: multicast o unicast. Por último, se especifica el funcionamiento básico de un sistema de acceso condicional, así como su estructura, el cual es imprescindible en todas las cabeceras para asegurar que cada usuario solo visualiza los contenidos contratados. In this project, a study is realized for the cable television head-end construction . It is a theoretical project in which there are specified each of the parts that form a television headend and how their works each of them. At first, the television head-end places inside a general platform of transmission, to indicate its functions. Later, the different technologies that implement this transmission and the standards DVB that govern them are analyzed, since the standards that govern the cable transmissions (DVB-C and DVB-C2) to the standard that govern the IP transmissions (DVB-IPTV), to choose which of the options is the most guessed right and to adapt the television head-end to the same one. The theoretical development of the head-end, there is studied the process that follows the sign inside the same one, from the receipt of the channels up to the sending of the same ones towards the homes of the different users, happening before for the stages of codification and multiplexación. In addition, there are specified the equipments necessary for the correct functioning of each one of the stages. In the reception, the channels are receiving for each of the possible systems(satellite, cable, TDT and study), and they are demodulated and decoded by the receiver. Later, they are codified (in this project in MPEG-2 or H.264). The next stage is the stage of multiplexing. In the multiplexing stage, the channels are packetized in Transport Stream, composed by his video flow, audio and information. The information are composed by many tables(SI and PSI). The PSI tables guide the set-top-box of the user in the programs decoding and the SI tables provide information about the programs and system. With the information mentioned the decoder forms the EPG. Later, a second multiplexación is realized, so that there includes multiple programs in an alone Transport Stream (MPTS). These MPTS are the flows that are sent to each of the users. Two types of transmission are possible: unicast (VoD channels) and multicast (live channels). Finally, the basic functioning of a conditional access system is specified and his structure too, which is indispensable in all the head-end to assure that every users visualizes the contracted contents only.
Resumo:
Single core capabilities have reached their maximum clock speed; new multicore architectures provide an alternative way to tackle this issue instead. The design of decoding applications running on top of these multicore platforms and their optimization to exploit all system computational power is crucial to obtain best results. Since the development at the integration level of printed circuit boards are increasingly difficult to optimize due to physical constraints and the inherent increase in power consumption, development of multiprocessor architectures is becoming the new Holy Grail. In this sense, it is crucial to develop applications that can run on the new multi-core architectures and find out distributions to maximize the potential use of the system. Today most of commercial electronic devices, available in the market, are composed of embedded systems. These devices incorporate recently multi-core processors. Task management onto multiple core/processors is not a trivial issue, and a good task/actor scheduling can yield to significant improvements in terms of efficiency gains and also processor power consumption. Scheduling of data flows between the actors that implement the applications aims to harness multi-core architectures to more types of applications, with an explicit expression of parallelism into the application. On the other hand, the recent development of the MPEG Reconfigurable Video Coding (RVC) standard allows the reconfiguration of the video decoders. RVC is a flexible standard compatible with MPEG developed codecs, making it the ideal tool to integrate into the new multimedia terminals to decode video sequences. With the new versions of the Open RVC-CAL Compiler (Orcc), a static mapping of the actors that implement the functionality of the application can be done once the application executable has been generated. This static mapping must be done for each of the different cores available on the working platform. It has been chosen an embedded system with a processor with two ARMv7 cores. This platform allows us to obtain the desired tests, get as much improvement results from the execution on a single core, and contrast both with a PC-based multiprocessor system. Las posibilidades ofrecidas por el aumento de la velocidad de la frecuencia de reloj de sistemas de un solo procesador están siendo agotadas. Las nuevas arquitecturas multiprocesador proporcionan una vía de desarrollo alternativa en este sentido. El diseño y optimización de aplicaciones de descodificación de video que se ejecuten sobre las nuevas arquitecturas permiten un mejor aprovechamiento y favorecen la obtención de mayores rendimientos. Hoy en día muchos de los dispositivos comerciales que se están lanzando al mercado están integrados por sistemas embebidos, que recientemente están basados en arquitecturas multinúcleo. El manejo de las tareas de ejecución sobre este tipo de arquitecturas no es una tarea trivial, y una buena planificación de los actores que implementan las funcionalidades puede proporcionar importantes mejoras en términos de eficiencia en el uso de la capacidad de los procesadores y, por ende, del consumo de energía. Por otro lado, el reciente desarrollo del estándar de Codificación de Video Reconfigurable (RVC), permite la reconfiguración de los descodificadores de video. RVC es un estándar flexible y compatible con anteriores codecs desarrollados por MPEG. Esto hace de RVC el estándar ideal para ser incorporado en los nuevos terminales multimedia que se están comercializando. Con el desarrollo de las nuevas versiones del compilador específico para el desarrollo de lenguaje RVC-CAL (Orcc), en el que se basa MPEG RVC, el mapeo estático, para entornos basados en multiprocesador, de los actores que integran un descodificador es posible. Se ha elegido un sistema embebido con un procesador con dos núcleos ARMv7. Esta plataforma nos permitirá llevar a cabo las pruebas de verificación y contraste de los conceptos estudiados en este trabajo, en el sentido del desarrollo de descodificadores de video basados en MPEG RVC y del estudio de la planificación y mapeo estático de los mismos.
Resumo:
El presente proyecto final de carrera titulado “Modelado de alto nivel con SystemC” tiene como objetivo principal el modelado de algunos módulos de un codificador de vídeo MPEG-2 utilizando el lenguaje de descripción de sistemas igitales SystemC con un nivel de abstracción TLM o Transaction Level Modeling. SystemC es un lenguaje de descripción de sistemas digitales basado en C++. En él hay un conjunto de rutinas y librerías que implementan tipos de datos, estructuras y procesos especiales para el modelado de sistemas digitales. Su descripción se puede consultar en [GLMS02] El nivel de abstracción TLM se caracteriza por separar la comunicación entre los módulos de su funcionalidad. Este nivel de abstracción hace un mayor énfasis en la funcionalidad de la comunicación entre los módulos (de donde a donde van datos) que la implementación exacta de la misma. En los documentos [RSPF] y [HG] se describen el TLM y un ejemplo de implementación. La arquitectura del modelo se basa en el codificador MVIP-2 descrito en [Gar04], de dicho modelo, los módulos implementados son: · IVIDEOH: módulo que realiza un filtrado del vídeo de entrada en la dimensión horizontal y guarda en memoria el video filtrado. · IVIDEOV: módulo que lee de la memoria el vídeo filtrado por IVIDEOH, realiza el filtrado en la dimensión horizontal y escribe el video filtrado en memoria. · DCT: módulo que lee el video filtrado por IVIDEOV, hace la transformada discreta del coseno y guarda el vídeo transformado en la memoria. · QUANT: módulo que lee el video transformado por DCT, lo cuantifica y guarda el resultado en la memoria. · IQUANT: módulo que lee el video cuantificado por QUANT, realiza la cuantificación inversa y guarda el resultado en memoria. · IDCT: módulo que lee el video procesado por IQUANT, realiza la transformada inversa del coseno y guarda el resultado en memoria. · IMEM: módulo que hace de interfaz entre los módulos anteriores y la memoria. Gestiona las peticiones simultáneas de acceso a la memoria y asegura el acceso exclusivo a la memoria en cada instante de tiempo. Todos estos módulos aparecen en gris en la siguiente figura en la que se muestra la arquitectura del modelo: Figura 1. Arquitectura del modelo (VER PDF DEL PFC) En figura también aparecen unos módulos en blanco, dichos módulos son de pruebas y se han añadido para realizar simulaciones y probar los módulos del modelo: · CAMARA: módulo que simula una cámara en blanco y negro, lee la luminancia de un fichero de vídeo y lo envía al modelo a través de una FIFO. · FIFO: hace de interfaz entre la cámara y el modelo, guarda los datos que envía la cámara hasta que IVIDEOH los lee. · CONTROL: módulo que se encarga de controlar los módulos que procesan el vídeo, estos le indican cuando terminan de procesar un frame de vídeo y este módulo se encarga de iniciar los módulos que sean necesarios para seguir con la codificación. Este módulo se encarga del correcto secuenciamiento de los módulos procesadores de vídeo. · RAM: módulo que simula una memoria RAM, incluye un retardo programable en el acceso. Para las pruebas también se han generado ficheros de vídeo con el resultado de cada módulo procesador de vídeo, ficheros con mensajes y un fichero de trazas en el que se muestra el secuenciamiento de los procesadores. Como resultado del trabajo en el presente PFC se puede concluir que SystemC permite el modelado de sistemas digitales con bastante sencillez (hace falta conocimientos previos de C++ y programación orientada objetos) y permite la realización de modelos con un nivel de abstracción mayor a RTL, el habitual en Verilog y VHDL, en el caso del presente PFC, el TLM. ABSTRACT This final career project titled “High level modeling with SystemC” have as main objective the modeling of some of the modules of an MPEG-2 video coder using the SystemC digital systems description language at the TLM or Transaction Level Modeling abstraction level. SystemC is a digital systems description language based in C++. It contains routines and libraries that define special data types, structures and process to model digital systems. There is a complete description of the SystemC language in the document [GLMS02]. The main characteristic of TLM abstraction level is that it separates the communication among modules of their functionality. This abstraction level puts a higher emphasis in the functionality of the communication (from where to where the data go) than the exact implementation of it. The TLM and an example are described in the documents [RSPF] and [HG]. The architecture of the model is based in the MVIP-2 video coder (described in the document [Gar04]) The modeled modules are: · IVIDEOH: module that filter the video input in the horizontal dimension. It saves the filtered video in the memory. · IVIDEOV: module that read the IVIDEOH filtered video, filter it in the vertical dimension and save the filtered video in the memory. · DCT: module that read the IVIDEOV filtered video, do the discrete cosine transform and save the transformed video in the memory. · QUANT: module that read the DCT transformed video, quantify it and save the quantified video in the memory. · IQUANT: module that read the QUANT processed video, do the inverse quantification and save the result in the memory. · IDCT: module that read the IQUANT processed video, do the inverse cosine transform and save the result in the memory. · IMEM: this module is the interface between the modules described previously and the memory. It manage the simultaneous accesses to the memory and ensure an unique access at each instant of time All this modules are included in grey in the following figure (SEE PDF OF PFC). This figure shows the architecture of the model: Figure 1. Architecture of the model This figure also includes other modules in white, these modules have been added to the model in order to simulate and prove the modules of the model: · CAMARA: simulates a black and white video camera, it reads the luminance of a video file and sends it to the model through a FIFO. · FIFO: is the interface between the camera and the model, it saves the video data sent by the camera until the IVIDEOH module reads it. · CONTROL: controls the modules that process the video. These modules indicate the CONTROL module when they have finished the processing of a video frame. The CONTROL module, then, init the necessary modules to continue with the video coding. This module is responsible of the right sequence of the video processing modules. · RAM: it simulates a RAM memory; it also simulates a programmable delay in the access to the memory. It has been generated video files, text files and a trace file to check the correct function of the model. The trace file shows the sequence of the video processing modules. As a result of the present final career project, it can be deduced that it is quite easy to model digital systems with SystemC (it is only needed previous knowledge of C++ and object oriented programming) and it also allow the modeling with a level of abstraction higher than the RTL used in Verilog and VHDL, in the case of the present final career project, the TLM.