840 resultados para MONOCYTES
Resumo:
Leukocytes are cells of defense. Their main function is to protect our body against invading microorganisms. Some leukocytes, in particular, polymorphonuclear and monocytes, accumulate at sites of infection and neutralize pathogens through innate mechanisms. The blood and lymphatic vascular system are essential partners in this defensive reaction: Activated endothelial cells promote leukocyte recruitment at inflammatory sites; new blood vessel formation, a process called angiogenesis, sustains chronic inflammation, and lymphatic vessels transport antigens and antigen-presenting cells to lymph nodes, where they stimulate naive T and B lymphocytes to elicit an antigen-specific immune response. In contrast, leukocytes and lymphocytes are far less efficient in protecting us from cancer, the "enemy from within." Worse, cancer can exploit inflammation to its advantage. The role of angiogenesis, leukocytes, and inflammation in tumor progression was discussed at the second Monte Verità Conference, Tumor Host Interaction and Angiogenesis: Basic Mechanisms and Therapeutic Perspectives, held in Ascona, Switzerland, October 1-5, 2005. (Conference chairs were K. Alitalo, M. Aguet, C. Rüegg, and I. Stamenkovic.) Eight articles reporting about topics presented at the conference are featured in this issue of the Journal of Leukocyte Biology.
Resumo:
Cancer-related inflammation has emerged in recent years as a major event contributing to tumor angiogenesis, tumor progression and metastasis formation. Bone marrow-derived and inflammatory cells promote tumor angiogenesis by providing endothelial progenitor cells that differentiate into mature endothelial cells, and by secreting pro-angiogenic factors and remodeling the extracellular matrix to stimulate angiogenesis though paracrine mechanisms. Several bone marrow-derived myelonomocytic cells, including monocytes and macrophages, have been identified and characterized by several laboratories in recent years. While the central role of these cells in promoting tumor angiogenesis, tumor progression and metastasis is nowadays well established, many questions remain open and new ones are emerging. These include the relationship between their phenotype and function, the mechanisms of pro-angiogenic programming, their contribution to resistance to anti-angiogenic treatments and to metastasis and their potential clinical use as biomarkers of angiogenesis and anti-angiogenic therapies. Here, we will review phenotypical and functional aspects of bone marrow-derived myelonomocytic cells and discuss some of the current outstanding questions.
Resumo:
BACKGROUND: Myeloid cells are key players in the recognition and response of the host against invading viruses. Paradoxically, upon HIV-1 infection, myeloid cells might also promote viral pathogenesis through trans-infection, a mechanism that promotes HIV-1 transmission to target cells via viral capture and storage. The receptor Siglec-1 (CD169) potently enhances HIV-1 trans-infection and is regulated by immune activating signals present throughout the course of HIV-1 infection, such as interferon α (IFNα). RESULTS: Here we show that IFNα-activated dendritic cells, monocytes and macrophages have an enhanced ability to capture and trans-infect HIV-1 via Siglec-1 recognition of viral membrane gangliosides. Monocytes from untreated HIV-1-infected individuals trans-infect HIV-1 via Siglec-1, but this capacity diminishes after effective antiretroviral treatment. Furthermore, Siglec-1 is expressed on myeloid cells residing in lymphoid tissues, where it can mediate viral trans-infection. CONCLUSIONS: Siglec-1 on myeloid cells could fuel novel CD4(+) T-cell infections and contribute to HIV-1 dissemination in vivo.
Resumo:
Growth arrest-specific 6 (Gas6) is widely expressed in leukocytes, platelets, endothelial cells, and monocytes. It regulates various processes including granulocyte adhesion to the endothelium, cell migration, thrombus stabilization, and cytokine release. In humans, increased plasma Gas6 levels have been described in patients with sepsis and septic shock. In this study, Gas6 concentrations were measured in postmortem serum from femoral blood in a series of sepsis-related fatalities and control cases. The aims were twofold: first, to determine whether Gas6 can be reliably determined in postmortem serum; and second, to assess its diagnostic potential in identifying sepsis-related deaths. Two study groups were prospectively formed, a sepsis-related fatalities group (24 cases) and a control group (24 cases) including cases of deep vein thrombosis and fatal pulmonary embolism, cases of systemic inflammatory response syndrome in severe trauma, cases of end-stage renal failure, and cases of hanging (non-septic, non-SIRS, non-end stage renal failure cases). The preliminary results of this study seem to indicate that Gas6 can be effectively measured in postmortem serum. However, Gas6 levels in sepsis-related fatalities do not appear to be clearly distinguishable from concentrations in pulmonary embolism, severe trauma, and end-stage renal failure cases. These findings tend to support previous reports that indicated that Gas6 behaves as an acute phase reactant and can be considered a general marker of inflammation rather than a specific biomarker of sepsis.
Resumo:
UNLABELLED: NYVAC, a highly attenuated, replication-restricted poxvirus, is a safe and immunogenic vaccine vector. Deletion of immune evasion genes from the poxvirus genome is an attractive strategy for improving the immunogenic properties of poxviruses. Using systems biology approaches, we describe herein the enhanced immunological profile of NYVAC vectors expressing the HIV-1 clade C env, gag, pol, and nef genes (NYVAC-C) with single or double deletions of genes encoding type I (ΔB19R) or type II (ΔB8R) interferon (IFN)-binding proteins. Transcriptomic analyses of human monocytes infected with NYVAC-C, NYVAC-C with the B19R deletion (NYVAC-C-ΔB19R), or NYVAC-C with B8R and B19R deletions (NYVAC-C-ΔB8RB19R) revealed a concerted upregulation of innate immune pathways (IFN-stimulated genes [ISGs]) of increasing magnitude with NYVAC-C-ΔB19R and NYVAC-C-ΔB8RB19R than with NYVAC-C. Deletion of B8R and B19R resulted in an enhanced activation of IRF3, IRF7, and STAT1 and the robust production of type I IFNs and of ISGs, whose expression was inhibited by anti-type I IFN antibodies. Interestingly, NYVAC-C-ΔB8RB19R induced the production of much higher levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-6 [IL-6], and IL-8) than NYVAC-C or NYVAC-C-ΔB19R as well as a strong inflammasome response (caspase-1 and IL-1β) in infected monocytes. Top network analyses showed that this broad response mediated by the deletion of B8R and B19R was organized around two upregulated gene expression nodes (TNF and IRF7). Consistent with these findings, monocytes infected with NYVAC-C-ΔB8RB19R induced a stronger type I IFN-dependent and IL-1-dependent allogeneic CD4(+) T cell response than monocytes infected with NYVAC-C or NYVAC-C-ΔB19R. Dual deletion of type I and type II IFN immune evasion genes in NYVAC markedly enhanced its immunogenic properties via its induction of the increased expression of type I IFNs and IL-1β and make it an attractive candidate HIV vaccine vector. IMPORTANCE: NYVAC is a replication-deficient poxvirus developed as a vaccine vector against HIV. NYVAC expresses several genes known to impair the host immune defenses by interfering with innate immune receptors, cytokines, or interferons. Given the crucial role played by interferons against viruses, we postulated that targeting the type I and type II decoy receptors used by poxvirus to subvert the host innate immune response would be an attractive approach to improve the immunogenicity of NYVAC vectors. Using systems biology approaches, we report that deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus resulted in the robust expression of type I IFNs and interferon-stimulated genes (ISGs), a strong activation of the inflammasome, and upregulated expression of IL-1β and proinflammatory cytokines. Dual deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus improves its immunogenic profile and makes it an attractive candidate HIV vaccine vector.
Resumo:
BACKGROUND: Increasing evidences link T helper 17 (Th17) cells with multiple sclerosis (MS). In this context, interleukin-22 (IL-22), a Th17-linked cytokine, has been implicated in blood brain barrier breakdown and lymphocyte infiltration. Furthermore, polymorphism between MS patients and controls has been recently described in the gene coding for IL-22 binding protein (IL-22BP). Here, we aimed to better characterize IL-22 in the context of MS. METHODS: IL-22 and IL-22BP expressions were assessed by ELISA and qPCR in the following compartments of MS patients and control subjects: (1) the serum, (2) the cerebrospinal fluid, and (3) immune cells of peripheral blood. Identification of the IL-22 receptor subunit, IL-22R1, was performed by immunohistochemistry and immunofluorescence in human brain tissues and human primary astrocytes. The role of IL-22 on human primary astrocytes was evaluated using 7-AAD and annexin V, markers of cell viability and apoptosis, respectively. RESULTS: In a cohort of 141 MS patients and healthy control (HC) subjects, we found that serum levels of IL-22 were significantly higher in relapsing MS patients than in HC but also remitting and progressive MS patients. Monocytes and monocyte-derived dendritic cells contained an enhanced expression of mRNA coding for IL-22BP as compared to HC. Using immunohistochemistry and confocal microscopy, we found that IL-22 and its receptor were detected on astrocytes of brain tissues from both control subjects and MS patients, although in the latter, the expression was higher around blood vessels and in MS plaques. Cytometry-based functional assays revealed that addition of IL-22 improved the survival of human primary astrocytes. Furthermore, tumor necrosis factor α-treated astrocytes had a better long-term survival capacity upon IL-22 co-treatment. This protective effect of IL-22 seemed to be conferred, at least partially, by a decreased apoptosis. CONCLUSIONS: We show that (1) there is a dysregulation in the expression of IL-22 and its antagonist, IL-22BP, in MS patients, (2) IL-22 targets specifically astrocytes in the human brain, and (3) this cytokine confers an increased survival of the latter cells.
Resumo:
By merging computational systems modeling and experimental approaches, we have uncovered treatments reprogramming pro-angiogenic monocytes present in breast tumor into immunologically potent cells capable of mediating an anti-tumor immune response. The unraveled pathways and ligands which underlie monocyte pro-angiogenic activity have a strong predictive value for breast cancer patient relapse - free survival.
Resumo:
Nitric oxide (NO) produced by inducible NO synthase (iNOS, NOS-2) is an important component of the macrophage-mediated immune defense toward numerous pathogens. Murine macrophages produce NO after cytokine activation, whereas, under similar conditions, human macrophages produce low levels or no NO at all. Although human macrophages can express iNOS mRNA and protein on activation, whether they possess the complete machinery necessary for NO synthesis remains controversial. To define the conditions necessary for human monocytes/macrophages to synthesize NO when expressing a functional iNOS, the human monocytic U937 cell line was engineered to synthesize this enzyme, following infection with a retroviral expression vector containing human hepatic iNOS (DFGiNOS). Northern blot and Western blot analysis confirmed the expression of iNOS in transfected U937 cells both at the RNA and protein levels. NOS enzymatic activity was demonstrated in cell lysates by the conversion of L-[3H]arginine into L-[3H]citrulline and the production of NO by intact cells was measured by nitrite and nitrate accumulation in culture supernatants. When expressing functional iNOS, U937 cells were capable of releasing high levels of NO. NO production was strictly dependent on supplementation of the culture medium with tetrahydrobiopterin (BH4) and was not modified by stimulation of the cells with different cytokines. These observations suggest that (1) human monocytic U937 cells contain all the cofactors necessary for NO synthesis, except BH4 and (2) the failure to detect NO in cytokine-stimulated untransfected U937 cells is not due to the presence of a NO-scavenging molecule within these cells nor to the destabilization of iNOS protein. DFGiNOS U937 cells represent a valuable human model to study the role of NO in immunity toward tumors and pathogens.
Resumo:
Background: Few clinical studies have focused on the alcoholindependent cardiovascular effects of the phenolic compounds of red wine (RW). Objective: We aimed to evaluate the effects of ethanol and phenolic compounds of RW on the expression of inflammatory biomarkers related to atherosclerosis in subjects at high risk of cardiovascular disease. Design: Sixty-seven high-risk, male volunteers were included in a randomized, crossover consumption trial. After a washout period, all subjects received RW (30 g alcohol/d), the equivalent amount of dealcoholized red wine (DRW), or gin (30 g alcohol/d) for 4 wk. Before and after each intervention period, 7 cellular and 18 serum inflammatory biomarkers were evaluated. Results: Alcohol increased IL-10 and decreased macrophage-derived chemokine concentrations, whereas the phenolic compounds of RW decreased serum concentrations of intercellular adhesion molecule- 1, E-selectin, and IL-6 and inhibited the expression of lymphocyte function-associated antigen 1 in T lymphocytes and macrophage-1 receptor, Sialil-Lewis X, and C-C chemokine receptor type 2 expression in monocytes. Both ethanol and phenolic compounds of RW downregulated serum concentrations of CD40 antigen, CD40 ligand, IL-16, monocyte chemotactic protein-1, and vascular cell adhesion molecule-1. Conclusion: The results suggest that the phenolic content of RW may modulate leukocyte adhesion molecules, whereas both ethanol and polyphenols of RW may modulate soluble inflammatory mediators in high-risk patients. The trial was registered in the International Standard Randomized Controlled Trial Number Register at http://www. isrctn.org/ as ISRCTN88720134
Resumo:
Background: Few clinical studies have focused on the alcoholindependent cardiovascular effects of the phenolic compounds of red wine (RW). Objective: We aimed to evaluate the effects of ethanol and phenolic compounds of RW on the expression of inflammatory biomarkers related to atherosclerosis in subjects at high risk of cardiovascular disease. Design: Sixty-seven high-risk, male volunteers were included in a randomized, crossover consumption trial. After a washout period, all subjects received RW (30 g alcohol/d), the equivalent amount of dealcoholized red wine (DRW), or gin (30 g alcohol/d) for 4 wk. Before and after each intervention period, 7 cellular and 18 serum inflammatory biomarkers were evaluated. Results: Alcohol increased IL-10 and decreased macrophage-derived chemokine concentrations, whereas the phenolic compounds of RW decreased serum concentrations of intercellular adhesion molecule- 1, E-selectin, and IL-6 and inhibited the expression of lymphocyte function-associated antigen 1 in T lymphocytes and macrophage-1 receptor, Sialil-Lewis X, and C-C chemokine receptor type 2 expression in monocytes. Both ethanol and phenolic compounds of RW downregulated serum concentrations of CD40 antigen, CD40 ligand, IL-16, monocyte chemotactic protein-1, and vascular cell adhesion molecule-1. Conclusion: The results suggest that the phenolic content of RW may modulate leukocyte adhesion molecules, whereas both ethanol and polyphenols of RW may modulate soluble inflammatory mediators in high-risk patients. The trial was registered in the International Standard Randomized Controlled Trial Number Register at http://www. isrctn.org/ as ISRCTN88720134
Resumo:
Background: Epidemiologic studies have suggested that flavonoid intake plays a critical role in the prevention of coronary heart disease. Because atherosclerosis is considered a low-grade inflammatory disease, some feeding trials have analyzed the effects of cocoa (an important source of flavonoids) on inflammatory biomarkers, but the results have been controversial. Objective: The objective was to evaluate the effects of chronic cocoa consumption on cellular and serum biomarkers related to atherosclerosis in high-risk patients. Design: Forty-two high-risk volunteers (19 men and 23 women; mean 6 SD age: 69.7 6 11.5 y) were included in a randomized crossover feeding trial. All subjects received 40 g cocoa powder with 500 mL skim milk/d (C+M) or only 500 mL skim milk/d (M) for 4 wk. Before and after each intervention period, cellular and serum inflammatory biomarkers related to atherosclerosis were evaluated. Results: Adherence to the dietary protocol was excellent. No significant changes in the expression of adhesion molecules on T lymphocyte surfaces were found between the C+M and M groups. However, in monocytes, the expression of VLA-4, CD40, and CD36 was significantly lower (P = 0.005, 0.028, and 0.001, respectively) after C+M intake than after M intake. In addition, serum concentrations of the soluble endothelium-derived adhesion molecules P-selectin and intercellular adhesion molecule-1 were significantly lower (both P = 0.007) after C+M intake than after M intake. Conclusions: These results suggest that the intake of cocoa polyphenols may modulate inflammatory mediators in patients at high risk of cardiovascular disease. These antiinflammatory effects may contribute to the overall benefits of cocoa consumption against atherosclerosis. This trial was registered in the Current Controlled Trials at London, International Standard Randomized Controlled Trial Number, at controlled-trials.com as ISRCTN75176807.
Resumo:
PFAPA syndrome represents the most common cause of recurrent fever in children in European populations, and it is characterized by recurrent episodes of high fever, pharyngitis, cervical adenitis, and aphthous stomatitis. Many possible causative factors have been explored so far, including infectious agents, immunologic mechanisms and genetic predisposition, but the exact etiology remains unclear. Recent findings demonstrate a dysregulation of different components of innate immunity during PFAPA flares, such as monocytes, neutrophils, complement, and pro-inflammatory cytokines, especially IL-1β, suggesting an inflammasome-mediated innate immune system activation and supporting the hypothesis of an autoinflammatory disease. Moreover, in contrast with previous considerations, the strong familial clustering suggests a potential genetic origin rather than a sporadic disease. In addition, the presence of variants in inflammasome-related genes, mostly in NLRP3 and MEFV, suggests a possible role of inflammasome-composing genes in PFAPA pathogenesis. However, none of these variants seem to be relevant, alone, to its etiology, indicating a high genetic heterogeneity as well as an oligogenic or polygenic genetic background.
Resumo:
The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis.
Resumo:
Le mélanome cutané est un des cancers les plus agressifs et dont l'incidence augmente le plus en Suisse. Une fois métastatique, le pronostic de survie moyenne avec les thérapies actuelles est d'environ huit mois, avec moins de 5% de survie à cinq ans. Les récents progrès effectués dans la compréhension de la biologie de la cellule tumorale mais surtout dans l'importance du système immunitaire dans le contrôle de ce cancer ont permis le développement de nouveaux traitements novateurs et prometteurs. Ces thérapies, appelées immunothérapies, reposent sur la stimulation et l'augmentation de la réponse immunitaire à la tumeur. Alors que les derniers essais cliniques ont démontré l'efficacité de ces traitements chez les patients avec des stades avancés de la maladie, le contrôle de la maladie à long- terme est seulement atteint chez une minorité des patients. La suppression locale et systémique de la réponse immunitaire spécifique anti-tumorale apparaitrait comme une des raisons expliquant la persistance d'un mauvais pronostic clinique chez ces patients. Des études sur les souris ont montré que les vaisseaux lymphatiques joueraient un rôle primordial dans ce processus en induisant une tolérance immune, ce qui permettrait à la tumeur d'échapper au contrôle du système immunitaire et métastatiser plus facilement. Ces excitantes découvertes n'ont pas encore été établi et prouvé chez l'homme. Dans cette thèse, nous montrons pour la première fois que les vaisseaux lymphatiques sont directement impliqués dans la modulation de la réponse immunitaire au niveau local et systémique dans le mélanome chez l'homme. Ces récentes découvertes montrent le potentiel de combiner des thérapies visant le système lymphatique avec les immunothérapies actuellement utilisées afin d'améliorer le pronostic des patients atteint du mélanome. -- Cutaneous melanoma is one of the most invasive and metastatic human cancers and causes 75% of skin cancer mortality. Current therapies such as surgery and chemotherapy fail to control metastatic disease, and relapse occurs frequently due to microscopic residual lesions. It is, thus, essential to develop and optimize novel therapeutic strategies to improve curative responses in these patients. In recent decades, tumor immunologists have revealed the development of spontaneous adaptive immune responses in melanoma patients, leading to the accumulation of highly differentiated tumor-specific T cells at the tumor site. This remains one of the most powerful prognostic markers to date. Immunotherapies that augment the natural function of these tumor-specific T cells have since emerged as highly attractive therapeutic approaches to eliminate melanoma cells. While recent clinical trials have demonstrated great progress in the treatment of advanced stage melanoma, long-term disease control is still only achieved in a minority of patients. Local and systemic immune suppression by the tumor appears to be responsible, in part, for this poor clinical evolution. These facts underscore the need for a better analysis and characterization of immune- related pathways within the tumor microenvironment (TME), as well as at the systemic level. The overall goal of this thesis is, thus, to obtain greater insight into the complexity and heterogeneity of the TME in human melanoma, as well as to investigate immune modulation beyond the TME, which ultimately influences the immune system throughout the whole body. To achieve this, we established two main objectives: to precisely characterize local and systemic immune modulation (i) in untreated melanoma patients and (ii) in patients undergoing peptide vaccination or checkpoint blockade therapy with anti-cytotoxic T- lymphocyte-asisctaed protein-4 (CTLA-4) antibody. In the first and main part of this thesis, we analyzed lymphatic vessels in relation to anti-tumor immune responses in tissues from vaccinated patients using a combination of immunohistochemistry (IHC) techniques, whole slide scanning/analysis, and an automatic quantification system. Strikingly, we found that increased lymphatic vessel density was associated with high expression of immune suppressive molecules, low functionality of tumor-infiltrating CD8+ T cells and decreased cytokine production by tumor-antigen specific CD8+ T cells in the blood. These data revealed a previously unappreciated local and systemic role of lymphangiogenesis in modulating T cell responses in human cancer and support the use of therapies that target lymphatic vessels combined with existing and future T cell based therapies. In the second objective, we describe a metastatic melanoma patient who developed pulmonary sarcoid-like granulomatosis following repetitive vaccination with peptides and CpG. We demonstrated that the onset of this pulmonary autoimmune adverse event was related to the development of a strong and long-lasting tumor-specific CD8+ T cell response. This constitutes the first demonstration that a new generation tumor vaccine can induce the development of autoimmune adverse events. In the third objective, we assessed the use of Fourier Transform Infrared (FTIR) imaging to identify melanoma cells and lymphocyte subpopulations in lymph node (LN) metastasis tissues, thanks to a fruitful collaboration with researchers in Brussels. We demonstrated that the different cell types in metastatic LNs have different infrared spectral features allowing automated identification of these cells. This technic is therefore capable of distinguishing known and novel biological features in human tissues and has, therefore, significant potential as a tool for histopathological diagnosis and biomarker assessment. Finally, in the fourth objective, we investigated the role of colony- stimulating factor-1 (CSF-1) in modulating the anti-tumor response in ipilimumab-treated patients using IHC and in vitro co-cultures, revealing that melanoma cells produce CSF-1 via CTL-derived cytokines when attacked by cytotoxic T lymphocytes (CTLs), resulting in the recruitment of immunosuppressive monocytes. These findings support the combined use of CSF-1R blockade with T cell based immunotherapy for melanoma patients. Taken together, our results reveal the existence of novel mechanisms of immune modulation and thus promote the optimization of combination immunotherapies against melanoma. -- Le mélanome cutané est un des cancers humains les plus invasifs et métastatiques et est responsable de 75% de la mortalité liée aux cancers de la peau. Les thérapies comme la chirurgie et la chimiothérapie ont échoué à contrôler le mélanome métastatique, par ailleurs les rechutes sous ces traitements ont été montrées fréquentes. Il est donc essentiel de développer et d'optimiser de nouvelles stratégies thérapeutiques pour améliorer les réponses thérapeutiques de ces patients. Durant les dernières décennies, les immunologistes spécialisés dans les tumeurs ont démontré qu'un patient atteint du mélanome pouvait développer spontanément une réponse immune adaptative à sa tumeur et que l'accumulation de cellules T spécifiques tumorales au sein même de la tumeur était un des plus puissants facteurs pronostiques. Les immunothérapies qui ont pour but d'augmenter les fonctions naturelles de ces cellules T spécifiques tumorales ont donc émergé comme des approches thérapeutiques très attractives pour éliminer les cellules du mélanome. Alors que les derniers essais cliniques ont démontré un progrès important dans le traitement des formes avancées du mélanome, le contrôle de la maladie à long-terme est seulement atteint chez une minorité des patients. La suppression immune locale et systémique apparaitrait comme une des raisons expliquant la persistance d'un mauvais pronostic clinique chez ces patients. Ces considérations soulignent la nécessité de mieux analyser et caractériser les voies immunitaires non seulement au niveau local dans le microenvironement tumoral mais aussi au niveau systémique dans le sang des patients. Le but de cette thèse est d'obtenir une plus grande connaissance de la complexité et de l'hétérogénéité du microenvironement tumoral dans les mélanomes mais aussi d'investiguer la modulation immunitaire au delà du microenvironement tumoral au niveau systémique. Afin d'atteindre ce but, nous avons établi deux objectifs principaux : caractériser précisément la modulation locale et systémique du système immunitaire (i) chez les patients atteints du mélanome qui n'ont pas reçu de traitement et (ii) chez les patients qui ont été traités soit par des vaccins soit par des thérapies qui bloquent les points de contrôles. Dans la première et majeure partie de cette thèse, nous avons analysé les vaisseaux lymphatiques en relation avec la réponse immunitaire anti-tumorale dans les tissus des patients vaccinés grâce à des techniques d'immunohistochimie et de quantification informatisé et automatique des marquages. Nous avons trouvé qu'une densité élevée de vaisseaux lymphatiques dans la tumeur était associée à une plus grande expression de molécules immunosuppressives ainsi qu'à une diminution de la fonctionnalité des cellules T spécifiques tumoral dans la tumeur et dans le sang des patients. Ces résultats révèlent un rôle jusqu'à là inconnu des vaisseaux lymphatiques dans la modulation directe du système immunitaire au niveau local et systémique dans les cancers de l'homme. Cette recherche apporte finalement des preuves du potentiel de combiner des thérapies visant le système lymphatique avec des autres immunothérapies déjà utilisées en clinique. Dans le second objectif, nous rapportons le cas d'un patient atteint d'un mélanome avec de multiples métastases qui a développé à la suite de plusieurs vaccinations répétées et consécutives avec des peptides et du CpG, un évènement indésirable sous la forme d'une granulomatose pulmonaire sarcoid-like. Nous avons démontré que l'apparition de cet évènement était intimement liée au développement d'une réponse immunitaire durable et spécifique contre les antigènes de la tumeur. Par là- même, nous prouvons pour la première fois que la nouvelle génération de vaccins est aussi capable d'induire des effets indésirables auto-immuns. Pour le troisième objectif, nous avons voulu savoir si l'utilisation de la spectroscopie infrarouge à transformée de Fourier (IRTF) était capable d'identifier les cellules du mélanome ainsi que les différents sous-types cellulaires dans les ganglions métastatiques. Grâce à nos collaborateurs de Bruxelles, nous avons pu établir que les diverses composantes cellulaires des ganglions atteints par des métastases du mélanome présentaient des spectres infrarouges différents et qu'elles pouvaient être identifiées d'une façon automatique. Cette nouvelle technique permettrait donc de distinguer des caractéristiques biologiques connues ou nouvelles dans les tissus humains qui auraient des retombées pratiques importantes dans le diagnostic histopathologique et dans l'évaluation des biomarqueurs. Finalement dans le dernier objectif, nous avons investigué le rôle du facteur de stimulation des colonies (CSF-1) dans la modulation de la réponse immunitaire anti-tumorale chez les patients qui ont été traités par l'Ipilimumab. Nos expériences in vivo au niveau des tissus tumoraux et nos co-cultures in vitro nous ont permis de démontrer que les cytokines secrétées par les cellules T spécifiques anti-tumorales induisaient la sécrétion de CSF-1 dans les cellules du mélanome ce qui résultait en un recrutement de monocytes immunosuppresseurs. Dans son ensemble, cette thèse révèle donc l'existence de nouveaux mécanismes de modulation de la réponse immunitaire anti-tumorale et propose de nouvelles optimisations de combinaison d'immunothérapies contre le mélanome.
Resumo:
Hemoglobin and its structures have been described since the 1990s to enhance a variety of biological activities of endotoxins (LPS) in a dose-dependent manner. To investigate the interaction processes in more detail, the system was extended by studying the interactions of newly designed peptides from the γ-chain of human hemoglobin with the adjuvant monophosphoryl lipid A (MPLA), a partial structure of lipid A lacking its 1-phosphate. It was found that some selected Hbg peptides, in particular two synthetic substructures designated Hbg32 and Hbg35, considerably increased the bioactivity of MPLA, which alone was only a weak activator of immune cells. These findings hold true for human mononuclar cells, monocytes and T lymphocytes. To understand the mechanisms of action in more detail, biophysical techniques were applied. These showed a peptide-induced change of the MPLA aggregate structure from multilamellar into a non-lamellar, probably inverted, cubic structure. Concomitantly, the peptides incorporated into the tightly packed MPLA aggregates into smaller units down to monomers. The fragmentation of the aggregates was an endothermic process, differing from a complex formation but rather typical for a catalytic reaction.