994 resultados para MIXED-OXIDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solution-phase photocatalytic reduction of graphene oxide to reduced graphene oxide (RGO) by titanium dioxide (TiO2) nanoparticles produces an RGO-TiO2 composite that possesses enhanced charge transport properties beyond those of pure TiO2 nanoparticle films. These composite films exhibit electron lifetimes up to four times longer than that of intrinsic TiO2 films due to RGO acting as a highly conducting intraparticle charge transport network within the film. The intrinsic UV-active charge generation (photocurrent) of pure TiO2 was enhanced by a factor of 10 by incorporating RGO; we attribute this to both the highly conductive nature of the RGO and to improved charge collection facilitated by the intimate contact between RGO and the TiO2, uniquely afforded by the solution-phase photocatalytic reduction method. Integrating RGO into nanoparticle films using this technique should improve the performance of photovoltaic devices that utilize nanoparticle films, such as dye-sensitized and quantum-dot-sensitized solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrous oxide is a major greenhouse gas emission. The aim of this research was to develop and apply statistical models to characterize the complex spatial and temporal variation in nitrous oxide emissions from soils under different land use conditions. This is critical when developing site-specific management plans to reduce nitrous oxide emissions. These studies can improve predictions and increase our understanding of environmental factors that influence nitrous oxide emissions. They also help to identify areas for future research, which can further improve the prediction of nitrous oxide in practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-tin oxide was deposited on the surface of wollastonite using the mixed solution including stannic chloride pentahydrate precursor and wollastonite by a hydrolysis precipitation process. The antistatic properties of the wollastonite materials under different calcined conditions and composite materials (nano-SnO2/wollastonite, SW) were measured by rubber sheeter and four-point probe (FPP) sheet resistance measurement. Effects of hydrolysis temperature and time, calcination temperature and time, pH value and nano-SnO2 coating amount on the resistivity of SW powders were studied, and the optimum experimental conditions were obtained. The microstructure and surface properties of wollastonite, precipitate and SW were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), specific surface area analyzer (BET), thermogravimetry (TG), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Fourier translation infrared spectroscopy (FTIR) respectively. The results showed that the nano-SnO2/wollastonite composite materials under optimum preparation conditions showed better antistatic properties, the resistivity of which was reduced from 1.068 × 104 Ω cm to 2.533 × 103 Ω cm. From TG and XRD analysis, the possible mechanism for coating of SnO2 nanoparticles on the surface of wollastonite was proposed. The infrared spectrum indicated that there were a large number of the hydroxyl groups on the surface of wollastonite. This is beneficial to the heterogeneous nucleation reaction. Through morphology, EDS and XPS analysis, the surface of wollastonite fiber was coated with a layer of 10–15 nm thickness of tin oxide grains the distribution of which was uniform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adequate amount of graphene oxide (GO) was firstly prepared by oxidation of graphite and GO/epoxy nanocomposites were subsequently prepared by typical solution mixing technique. X-ray diffraction (XRD) pattern, X-ray photoelectron (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy indicated the successful preparation of GO. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) images of the graphite oxide showed that they consist of a large amount of graphene oxide platelets with a curled morphology containing of a thin wrinkled sheet like structure. AFM image of the exfoliated GO signified that the average thickness of GO sheets is ~1.0 nm which is very similar to GO monolayer. Mechanical properties of as prepared GO/epoxy nanocomposites were investigated. Significant improvements in both Young’s modulus and tensile strength were observed for the nanocomposites at very low level of GO loading. The Young’s modulus of the nanocomposites containing 0.5 wt% GO was 1.72 GPa, which was 35 % higher than that of the pure epoxy resin (1.28 GPa). The effective reinforcement of the GO based epoxy nanocomposites can be attributed to the good dispersion and the strong interfacial interactions between the GO sheets and the epoxy resin matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiac catheterisation laboratory (CCL) is a specialised medical radiology facility where both chronic-stable and life-threatening cardiovascular illness is evaluated and treated. Although there are many potential sources of discomfort and distress associated with procedures performed in the CCL, a general anaesthetic is not usually required. For this reason, an anaesthetist is not routinely assigned to the CCL. Instead, to manage pain, discomfort and anxiety during the procedure, nurses administer a combination of sedative and analgesic medications according to direction from the cardiologist performing the procedure. This practice is referred to as nurse-administered procedural sedation and analgesia (PSA). While anecdotal evidence suggested that nurse-administered PSA was commonly used in the CCL, it was clear from the limited information available that current nurse-led PSA administration and monitoring practices varied and that there was contention around some aspects of practice including the type of medications that were suitable to be used and the depth of sedation that could be safely induced without an anaesthetist present. The overall aim of the program of research presented in this thesis was to establish an evidence base for nurse-led sedation practices in the CCL context. A sequential mixed methods design was used over three phases. The objective of the first phase was to appraise the existing evidence for nurse-administered PSA in the CCL. Two studies were conducted. The first study was an integrative review of empirical research studies and clinical practice guidelines focused on nurse-administered PSA in the CCL as well as in other similar procedural settings. This was the first review to systematically appraise the available evidence supporting the use of nurse-administered PSA in the CCL. A major finding was that, overall, nurse-administered PSA in the CCL was generally deemed to be safe. However, it was concluded from the analysis of the studies and the guidelines that were included in the review, that the management of sedation in the CCL was impacted by a variety of contextual factors including local hospital policy, workforce constraints and cardiologists’ preferences for the type of sedation used. The second study in the first phase was conducted to identify a sedation scale that could be used to monitor level of sedation during nurse-administered PSA in the CCL. It involved a structured literature review and psychometric analysis of scale properties. However, only one scale was found that was developed specifically for the CCL, which had not undergone psychometric testing. Several weaknesses were identified in its item structure. Other sedation scales that were identified were developed for the ICU. Although these scales have demonstrated validity and reliability in the ICU, weaknesses in their item structure precluded their use in the CCL. As findings indicated that no existing sedation scale should be applied to practice in the CCL, recommendations for the development and psychometric testing of a new sedation scale were developed. The objective of the second phase of the program of research was to explore current practice. Three studies were conducted in this phase using both quantitative and qualitative research methods. The first was a qualitative explorative study of nurses’ perceptions of the issues and challenges associated with nurse-administered PSA in the CCL. Major themes emerged from analysis of the qualitative data regarding the lack of access to anaesthetists, the limitations of sedative medications, the barriers to effective patient monitoring and the impact that the increasing complexity of procedures has on patients' sedation requirements. The second study in Phase Two was a cross-sectional survey of nurse-administered PSA practice in Australian and New Zealand CCLs. This was the first study to quantify the frequency that nurse-administered PSA was used in the CCL setting and to characterise associated nursing practices. It was found that nearly all CCLs utilise nurse-administered PSA (94%). Of note, by characterising nurse-administered PSA in Australian and New Zealand CCLs, several strategies to improve practice, such as setting up protocols for patient monitoring and establishing comprehensive PSA education for CCL nurses, were identified. The third study in Phase Two was a matched case-control study of risk factors for impaired respiratory function during nurse-administered PSA in the CCL setting. Patients with acute illness were found to be nearly twice as likely to experience impaired respiratory function during nurse-administered PSA (OR=1.78; 95%CI=1.19-2.67; p=0.005). These significant findings can now be used to inform prospective studies investigating the effectiveness of interventions for impaired respiratory function during nurse-administered PSA in the CCL. The objective of the third and final phase of the program of research was to develop recommendations for practice. To achieve this objective, a synthesis of findings from the previous phases of the program of research informed a modified Delphi study, which was conducted to develop a set of clinical practice guidelines for nurse-administered PSA in the CCL. The clinical practice guidelines that were developed set current best practice standards for pre-procedural patient assessment and risk screening practices as well as the intra and post-procedural patient monitoring practices that nurses who administer PSA in the CCL should undertake in order to deliver safe, evidence-based and consistent care to the many patients who undergo procedures in this setting. In summary, the mixed methods approach that was used clearly enabled the research objectives to be comprehensively addressed in an informed sequential manner, and, as a consequence, this thesis has generated a substantial amount of new knowledge to inform and support nurse-led sedation practice in the CCL context. However, a limitation of the research to note is that the comprehensive appraisal of the evidence conducted, combined with the guideline development process, highlighted that there were numerous deficiencies in the evidence base. As such, rather than being based on high-level evidence, many of the recommendations for practice were produced by consensus. For this reason, further research is required in order to ascertain which specific practices result in the most optimal patient and health service outcomes. Therefore, along with necessary guideline implementation and evaluation projects, post-doctoral research is planned to follow up on the research gaps identified, which are planned to form part of a continuing program of research in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human immunodeficiency virus (HIV) that leads to acquired immune deficiency syndrome (AIDs) reduces immune function, resulting in opportunistic infections and later death. Use of antiretroviral therapy (ART) increases chances of survival, however, with some concerns regarding fat re-distribution (lipodystrophy) which may encompass subcutaneous fat loss (lipoatrophy) and/or fat accumulation (lipohypertrophy), in the same individual. This problem has been linked to Antiretroviral drugs (ARVs), majorly, in the class of protease inhibitors (PIs), in addition to older age and being female. An additional concern is that the problem exists together with the metabolic syndrome, even when nutritional status/ body composition, and lipodystrophy/metabolic syndrome are unclear in Uganda where the use of ARVs is on the increase. In line with the literature, the overall aim of the study was to assess physical characteristics of HIV-infected patients using a comprehensive anthropometric protocol and to predict body composition based on these measurements and other standardised techniques. The other aim was to establish the existence of lipodystrophy, the metabolic syndrome, andassociated risk factors. Thus, three studies were conducted on 211 (88 ART-naïve) HIV-infected, 15-49 year-old women, using a cross-sectional approach, together with a qualitative study of secondary information on patient HIV and medication status. In addition, face-to-face interviews were used to extract information concerning morphological experiences and life style. The study revealed that participants were on average 34.1±7.65 years old, had lived 4.63±4.78 years with HIV infection and had spent 2.8±1.9 years receiving ARVs. Only 8.1% of participants were receiving PIs and 26% of those receiving ART had ever changed drug regimen, 15.5% of whom changed drugs due to lipodystrophy. Study 1 hypothesised that the mean nutritional status and predicted percent body fat values of study participants was within acceptable ranges; different for participants receiving ARVs and the HIV-infected ART-naïve participants and that percent body fat estimated by anthropometric measures (BMI and skinfold thickness) and the BIA technique was not different from that predicted by the deuterium oxide dilution technique. Using the Body Mass Index (BMI), 7.1% of patients were underweight (<18.5 kg/m2) and 46.4% were overweight/obese (≥25.0 kg/m2). Based on waist circumference (WC), approximately 40% of the cohort was characterized as centrally obese. Moreover, the deuterium dilution technique showed that there was no between-group difference in the total body water (TBW), fat mass (FM) and fat-free mass (FFM). However, the technique was the only approach to predict a between-group difference in percent body fat (p = .045), but, with a very small effect (0.021). Older age (β = 0.430, se = 0.089, p = .000), time spent receiving ARVs (β = 0.972, se = 0.089, p = .006), time with the infection (β = 0.551, se = 0.089, p = .000) and receiving ARVs (β = 2.940, se = 1.441, p = .043) were independently associated with percent body fat. Older age was the greatest single predictor of body fat. Furthermore, BMI gave better information than weight alone could; in that, mean percentage body fat per unit BMI (N = 192) was significantly higher in patients receiving treatment (1.11±0.31) vs. the exposed group (0.99±0.38, p = .025). For the assessment of obesity, percent fat measures did not greatly alter the accuracy of BMI as a measure for classifying individuals into the broad categories of underweight, normal and overweight. Briefly, Study 1 revealed that there were more overweight/obese participants than in the general Ugandan population, the problem was associated with ART status and that BMI broader classification categories were maintained when compared with the gold standard technique. Study 2 hypothesized that the presence of lipodystrophy in participants receiving ARVs was not different from that of HIV-infected ART-naïve participants. Results showed that 112 (53.1%) patients had experienced at least one morphological alteration including lipohypertrophy (7.6%), lipoatrophy (10.9%), and mixed alterations (34.6%). The majority of these subjects (90%) were receiving ARVs; in fact, all patients receiving PIs reported lipodystrophy. Period spent receiving ARVs (t209 = 6.739, p = .000), being on ART (χ2 = 94.482, p = .000), receiving PIs (Fisher’s exact χ2 = 113.591, p = .000), recent T4 count (CD4 counts) (t207 = 3.694, p = .000), time with HIV (t125 = 1.915, p = .045), as well as older age (t209 = 2.013, p = .045) were independently associated with lipodystrophy. Receiving ARVs was the greatest predictor of lipodystrophy (p = .000). In other analysis, aside from skinfolds at the subscapular (p = .004), there were no differences with the rest of the skinfold sites and the circumferences between participants with lipodystrophy and those without the problem. Similarly, there was no difference in Waist: Hip ratio (WHR) (p = .186) and Waist: Height ratio (WHtR) (p = .257) among participants with lipodystrophy and those without the problem. Further examination showed that none of the 4.1% patients receiving stavudine (d4T) did experience lipoatrophy. However, 17.9% of patients receiving EFV, a non-nucleoside reverse transcriptase inhibitor (NNRTI) had lipoatrophy. Study 2 findings showed that presence of lipodystrophy in participants receiving ARVs was in fact far higher than that of HIV-infected ART-naïve participants. A final hypothesis was that the prevalence of the metabolic syndrome in participants receiving ARVs was not different from that of HIV-infected ART-naïve participants. Moreover, data showed that many patients (69.2%) lived with at least one feature of the metabolic syndrome based on International Diabetic Federation (IDF, 2006) definition. However, there was no single anthropometric predictor of components of the syndrome, thus, the best anthropometric predictor varied as the component varied. The metabolic syndrome was diagnosed in 15.2% of the subjects, lower than commonly reported in this population, and was similar between the medicated and the exposed groups (χ 21 = 0.018, p = .893). Moreover, the syndrome was associated with older age (p = .031) and percent body fat (p = .012). In addition, participants with the syndrome were heavier according to BMI (p = .000), larger at the waist (p = .000) and abdomen (p = .000), and were at central obesity risk even when hip circumference (p = .000) and height (p = .000) were accounted for. In spite of those associations, results showed that the period with disease (p = .13), CD4 counts (p = .836), receiving ART (p = .442) or PIs (p = .678) were not associated with the metabolic syndrome. While the prevalence of the syndrome was highest amongst the older, larger and fatter participants, WC was the best predictor of the metabolic syndrome (p = .001). Another novel finding was that participants with the metabolic syndrome had greater arm muscle circumference (AMC) (p = .000) and arm muscle area (AMA) (p = .000), but the former was most influential. Accordingly, the easiest and cheapest indicator to assess risk in this study sample was WC should routine laboratory services not be feasible. In addition, the final study illustrated that the prevalence of the metabolic syndrome in participants receiving ARVs was not different from that of HIV-infected ART-naïve participants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modernized GPS and GLONASS, together with new GNSS systems, BeiDou and Galileo, offer code and phase ranging signals in three or more carriers. Traditionally, dual-frequency code and/or phase GPS measurements are linearly combined to eliminate effects of ionosphere delays in various positioning and analysis. This typical treatment method has imitations in processing signals at three or more frequencies from more than one system and can be hardly adapted itself to cope with the booming of various receivers with a broad variety of singles. In this contribution, a generalized-positioning model that the navigation system independent and the carrier number unrelated is promoted, which is suitable for both single- and multi-sites data processing. For the synchronization of different signals, uncalibrated signal delays (USD) are more generally defined to compensate the signal specific offsets in code and phase signals respectively. In addition, the ionospheric delays are included in the parameterization with an elaborate consideration. Based on the analysis of the algebraic structures, this generalized-positioning model is further refined with a set of proper constrains to regularize the datum deficiency of the observation equation system. With this new model, uncalibrated signal delays (USD) and ionospheric delays are derived for both GPS and BeiDou with a large dada set. Numerical results demonstrate that, with a limited number of stations, the uncalibrated code delays (UCD) are determinate to a precision of about 0.1 ns for GPS and 0.4 ns for BeiDou signals, while the uncalibrated phase delays (UPD) for L1 and L2 are generated with 37 stations evenly distributed in China for GPS with a consistency of about 0.3 cycle. Extra experiments concerning the performance of this novel model in point positioning with mixed-frequencies of mixed-constellations is analyzed, in which the USD parameters are fixed with our generated values. The results are evaluated in terms of both positioning accuracy and convergence time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FTIR spectra are reported of methanol adsorbed at 295 K on ZnO/SiO 2, on reduced Cu/ZnO/SiO2 and on Cu/ZnO/SiO2 which had been preoxidised by exposure to nitrous oxide. Methanol on ZnO/SiO2 gave methoxy species on ZnO and SiO, in addition to both strongly and weakly physisorbed methanol on SiO2. The corresponding adsorption of methanol on reduced Cu/ZnO/SiO2 also gave methoxy species on Cu and a small amount of bridging formate. Reaction of methanol with a reoxidised Cu/ZnO/SiO2 catalyst resulted in an enhanced quantity of methoxy species on Cu. Heating adsorbed species on Cu/ZnO/SiO2 at 393 K led to the loss of methoxy groups on Cu and the concomitant formation of formate species on both ZnO and Cu. The comparable reaction on a reoxidised Cu/ZnO/SiO2 catalyst gave an increased amount of formate species on ZnO and this correlated with an increased quantity of methoxy groups lost from Cu. An explanation is given in terms of adsorption of formate and formaldehyde species at special sites located at the copper/zinc oxide interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fourier-transform infrared (FTIR) spectra are reported of formic acid and formaldehyde on ZnO/SiO2, reduced Cu/ZnO/SiO2 and reoxidised Cu/ZnO/SiO2 catalyst. Formic acid adsorption on ZnO/SiO2 produced mainly bidentate zinc formate species with a lesser quantity of unidentate zinc formate. Formic acid on reduced Cu/ZnO/SiO2 catalyst resulted not only in the formation of bridging copper formate structures but also in an enhanced amount of formate relative to that for ZnO/SiO2 catalyst. Formic acid on reoxidised Cu/ZnO/SiO2 gave unidentate formate species on copper in addition to zinc formate moieties. The interaction of formaldehyde with ZnO/SiO2 catalyst resulted in the formation of zinc formate species. The same reaction on reduced Cu/ZnO/SiO2 catalyst gave bridging formate on copper and a remarkable increase in the quantity of formate species associated with the zinc oxide. Adsorption of formaldehyde on a reoxidised Cu/ZnO/SiO2 catalyst produced bridging copper formate and again an apparent increase in the concentration of zinc formate species. An explanation in terms of the adsorption of molecules at special sites located at the interface between copper and zinc oxide is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FTIR spectra are reported of methyl formate adsorbed at 295 K on ZnO/SiO2, reduced Cu/ZnO/SiO2 and on Cu/ZnO/SiO2 which had been preoxidised by exposure to nitrous oxide. Methyl formate on ZnO/SiO2 gave adsorbed zinc formate species and strongly physisorbed molecular methanol on silica. The comparable reaction of methyl formate with reduced Cu/ZnO/SiO2 catalyst produced bridging formate species on copper and a diminished quantity of zinc formate relative to that formed on ZnO/SiO2 catalyst. This effect is explained in terms of site blockage on the ZnO surface by small copper clusters. Addition of methyl formate to a reoxidised Cu/ZnO/SiO2 catalyst produced a considerably greater amount of formate species on zinc oxide and methoxy groups on copper were detected. The increase in concentration of zinc formate species was rationalised in terms of rearrangement of unidentate copper formate species to become bonded to copper and zinc oxide sites located at the interface between these two components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composition of a series of hydroxycarbonate precursors to copper/zinc oxide methanol synthesis catalysts prepared under conditions reported as optimum for catalytic activity has been studied. Techniques employed included thermogravimetry (TG), temperature-programmed decomposition (TPD), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and Raman and FTIR spectroscopies. Evidence was obtained for various structural phases including hydrozincite, copper hydrozincite, aurichalcite, zincian malachite and malachite (the concentrations of which depended upon the exact Cu/Zn ratio used). Significantly, previously reported phases such as gerhardite and rosasite were not identified when catalysts were synthesized at optimum solution pH and temperature values, and after appropriate aging periods. Calcination of the hydroxycarbonate precursors resulted in the formation of catalysts containing an intimate mixture of copper and zinc oxides. Temperature-programmed reduction (TPR) revealed that a number of discrete copper oxide species were present in the catalyst, the precise concentrations of which were determined to be related to the structure of the catalyst precursor. Copper hydrozincite decomposed to give zinc oxide particles decorated by highly dispersed, small copper oxide species. Aurichalcite appeared to result ultimately in the most intimately mixed catalyst structure whereas zincian malachite decomposed to produce larger copper oxide and zinc oxide grains. The reason for the stabilization of small copper oxide and zinc oxide clusters by aurichalcite was investigated by using carefully selected calcination temperatures. It was concluded that the unique formation of an 'anion-modified' oxide resulting from the initial decomposition stage of aurichalcite was responsible for the 'binding' of copper species to zinc moieties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The techniques of environmental scanning electron microscopy (ESEM) and Raman microscopy have been used to respectively elucidate the morphological changes and nature of the adsorbed species on silver(I) oxide powder, during methanol oxidation conditions. Heating Ag2O in either water vapour or oxygen resulted firstly in the decomposition of silver(I) oxide to polycrystalline silver at 578 K followed by sintering of the particles at higher temperature. Raman spectroscopy revealed the presence of subsurface oxygen and hydroxyl species in addition to surface hydroxyl groups after interaction with water vapour. Similar species were identified following exposure to oxygen in an ambient atmosphere. This behaviour indicated that the polycrystalline silver formed from Ag2O decomposition was substantially more reactive than silver produced by electrochemical methods. The interaction of water at elevated temperatures subsequent to heating silver(I) oxide in oxygen resulted in a significantly enhanced concentration of subsurface hydroxyl species. The reaction of methanol with Ag2O at high temperatures was interesting in that an inhibition in silver grain growth was noted. Substantial structural modification of the silver(I) oxide material was induced by catalytic etching in a methanol/air mixture. In particular, "pin-hole" formation was observed to occur at temperatures in excess of 773 K, and it was also recorded that these "pin- holes" coalesced to form large-scale defects under typical industrial reaction conditions. Raman spectroscopy revealed that the working surface consisted mainly of subsurface oxygen and surface Ag=O species. The relative lack of sub-surface hydroxyl species suggested that it was the desorption of such moieties which was the cause of the "pin-hole" formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined techniques of in situ Raman microscopy and scanning electron microscopy (SEM) have been used to study the selective oxidation of methanol to formaldehyde and the ethene epoxidation reaction over polycrystalline silver catalysts. The nature of the oxygen species formed on silver was found to depend critically upon the exact morphology of the catalyst studied. Bands at 640, 780 and 960 cm-1 were identified only on silver catalysts containing a significant proportion of defects. These peaks were assigned to subsurface oxygen species situated in the vicinity of surface dislocations, AgIII=O sites formed on silver atoms modified by the presence of subsurface oxygen and O2 - species stabilized on subsurface oxygen-modified silver sites, respectively. The selective oxidation of methanol to formaldehyde was determined to occur at defect sites, where reaction of methanol with subsurface oxygen initially produced subsurface OH species (451 cm-1) and adsorbed methoxy species. Two distinct forms of adsorbed ethene were identified on oxidised silver sites. One of these was created on silver sites modified by the interaction of subsurface oxygen species, and the other on silver crystal planes containing a surface coverage of atomic oxygen species. The selective oxidation of ethene to ethylene oxide was achieved by the reaction between ethene adsorbed on modified silver sites and electrophilic AgIII=O species, whereas the combustion reaction was perceived to take place by the reaction of adsorbed ethene with nucleophilic surface atomic oxygen species. Defects were determined to play a critical role in the epoxidation reaction, as these sites allowed the rapid diffusion of oxygen into subsurface positions, and consequently facilitated the formation of the catalytically active AgIII=O sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman and Fourier transform infrared (FT-IR) spectroscopy have been applied to a systematic investigation of the adsorption and decomposition of dichlorodifluoromethane (CCl2F2, CFC-12), fluorotrichloromethane (CCl3F, CFC-11), chlorodifluoromethane (CHClF2, HCFC-22) and molecular chlorine on oxide surfaces. Additionally, the effects of heating and ultraviolet photolysis of the CFC and HCFCs adsorbed on the oxide surfaces have been investigated. Spectral features for these species indicated a small wavenumber shift (1-6 cm-1) associated with the adsorbed phase. Some evidence, specifically the appearance of the Raman band at 507 cm-1, is presented to show that chlorine decomposition species are associated with these oxide surfaces. It was concluded that the new spectral feature (at ca. 507 cm-1) related with the decomposition of the CFC and HCFC molecules was an important indicator of the extent to which the reaction between the adsorbed CFC and HCFC and oxide surface has taken place. The extent of CFC-surface interaction has been quantified in terms of a maximum (Raman) frequency shift parameter (AM). Wavenumber shifts suggest both cation-adsorbate and non-specific adsorption interactions are occurring in the internal channels of the zeolites. Slow decomposition of the adsorbed CFCs under ultraviolet-visible photolysis (at ? > 300 nm) and/or thermal treatment was observed spectroscopically. Using FT-IR spectroscopy, the formation of gas-phase products (CO, CO2, HCl) both onyn photolysis and heating was evident. Results of these measurements are compared with the observed atmospheric reactivity of these compounds.