994 resultados para MIXED-LAYER
Resumo:
Sediments from five Leg 167 drill sites and three piston cores were analyzed for Corg and CaCO3. Oxygen isotope stratigraphy on benthic foraminifers was used to assign age models to these sedimentary records. We find that the northern and central California margin is characterized by k.y.-scale events that can be found in both the CaCO3 and Corg time series. We show that the CaCO3 events are caused by changes in CaCO3 production by plankton, not by dissolution. We also show that these CaCO3 events occur in marine isotope Stages (MIS) 2, 3, and 4 during Dansgaard/Oeschger interstadials. They occur most strongly, however, on the MIS 5/4 glaciation and MIS 2/1 deglaciation. We believe that the link between the northeastern Pacific Ocean and North Atlantic is primarily transmitted by the atmosphere, not the ocean. Highest CaCO3 production and burial occurs when the surface ocean is somewhat cooler than the modern ocean, and the surface mixed layer is somewhat more stable.
Resumo:
Phyllosilicates occurring as replacements of olivine, clinopyroxene and interstitial materials and as veins or fracture-fillings in hydrothermally altered basalts from DSDP Hole 504B, Leg 83 have been studied using transmission and analytical electron microscopy. The parageneses of phyllosilicates generally change systematically with depth and with the degree of alteration, which in turn is related to permeability of basalts. Saponite and some mixed-layer chlorite/smectite are the dominant phyllosilicates at the top of the transition zone. Chlorite, corrensite, and mixed-layer chlorite/corrensite occur mainly in the lower transition zone and upper levels of the sheeted dike zone. Chlorite, talc, and mixed-layer talc/chlorite are the major phyllosilicates in the sheeted dike zone, although replacement of talc or olivine by saponite is observed. The phyllosilicates consist of parallel or subparallel discrete packets of coherent layers with packet thicknesses generally ranging from < 100 A to a few hundred A. The packets of saponite layers are much smaller or less well defined than those of chlorite, corrensite and talc, indicating poorer crystallinity of saponite. By contrast, chlorite and talc from the lower transition zone and the sheeted dike zone occur in packets up to thousands of A thick. The Si/(Si + A1) ratio of these trioctahedral phyllosilicates increases and Fe/(Fe + Mg) decreases in the order chlorite, corrensite, saponite, and talc. These relations reflect optimal solid solution consistent with minimum misfit of articulated octahedral and tetrahedral sheets. Variations in composition of hydrothermal fluids and precursor minerals, especially in Si/(Si+A1) and Fe/(Fe+Mg) ratios, are thus important factors in controlling the parageneses of phyllosilicates. The phyllosilicates are generally well crystallized discrete phases, rather than mixed-layered phases, where they have been affected by relatively high fluid/rock ratios as in high-permeability basalts, in veins, or areas adjacent to veins. Intense alteration in basalts with high permeability (indicating high fluid/rock ratios) is characterized by pervasive albitization and zeolitization. Minimal alteration in the basalts without significant albitization and zeolitization is characterized by the occurrence of saponite ± mixed-layer chlorite/smectite in the low-temperature alteration zone, and mixed-layer chlorite/corrensite or mixed-layer talc/chlorite in the high-temperature alteration zone. Textural non-equilibrium for phyllosilicates is represented by mixed layering and poorly defined packets of partially incoherent layers. The approach to textural equilibrium was controlled largely by the availability of fluid or permeability.
Resumo:
In 2004, Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition, ACEX) to the Lomonosov Ridge drilled the first Central Arctic Ocean sediment record reaching the uppermost Cretaceous (~430 m composite depth). While the Neogene part of the record is characterized by grayish-yellowish siliciclastic material, the Paleogene part is dominated by biosiliceous black shale-type sediments. The lithological transition between Paleogene and Neogene deposits was initially interpreted as a single sedimentological unconformity (hiatus) of ~26 Ma duration, separating Eocene from Miocene strata. More recently, however, continuous sedimentation on Lomonosov Ridge throughout the Cenozoic was proclaimed, questioning the existence of a hiatus. In this context, we studied the elemental and mineralogical sediment composition around the Paleogene-Neogene transition at high resolution to reconstruct variations in the depositional regime (e.g. wave/current activity, detrital provenance, and bottom water redox conditions). Already below the hiatus, mineralogical and geochemical proxies imply drastic changes in sediment provenance and/or weathering intensity in the hinterland, and point to the existence of another, earlier gap in the sediment record. The sediments directly overlying the hiatus (the Zebra interval) are characterized by pronounced and abrupt compositional changes that suggest repeated erosion and re-deposition of material. Regarding redox conditions, euxinic bottom waters prevailed at the Eocene Lomonosov Ridge, and became even more severe directly before the hiatus. With detrital sedimentation rates decreasing, authigenic trace metals were highly enriched in the sediment. This continuous authigenic trace metal enrichment under persistent euxinia implies that the Arctic trace metal pool was renewed continuously by water mass exchange with the world ocean, so the Eocene Arctic Ocean was not fully restricted. Above the hiatus, extreme positive Ce anomalies are clear signs of a periodically well-oxygenated water column, but redox conditions were highly variable during deposition of the Zebra interval. Significant Mn enrichments only occur above the Zebra interval, documenting the Miocene establishment of stable oxic conditions in the Arctic Ocean. In summary, extreme and abrupt changes in geochemistry and mineralogy across the studied sediment section do not suggest continuous sedimentation at the Lomonosov Ridge around the Eocene-Miocene transition, but imply repeated periods of very low sedimentation rates and/or erosion.
Resumo:
These studies were performed from September 10 to 29, 2007 in the Kara Sea in transects westward of the Yamal Peninsula, near the St. Anna Trough, in the Ob River estuary (Obskay Guba), and on the adjacent shelf. Concentration of chlorophyll a in the euphotic layer varied from 0.02 to 4.37 µg/l, aver. 0.76 µg/l. Primary production in the water column varied from 10.9 to 148.0 mg C/m**2/day (aver. 56.9 mg C/m**2/day). It was shown that frontal zones divided the Kara Sea into distinct areas with different productivities. Maximum levels of primary production were measured in the deep part of the Yamal transect (132.4 mg C/m**2/day) and the shallow Kara Sea shelf near the Ob River estuary (74.9 mg C/m**2/day). Characteristics of these regions were low salinity of the surface water layer (19-25 psu) and elevated silicon concentration (12.8-28.1 µg-atom/l). It is explainable by river runoff. Frontal zones of the Yamal current within the Yamal and Ob transects showed high assimilation numbers reached to 2.32 and 1.49 mg C/mg Chl/hr, respectively; they were maximal for studied areas.