943 resultados para MEMORY SYSTEMS INTERACTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the influence of the driving mechanism on the hysteretic response of systems with athermal dynamics. In the framework of local mean-field theory at finite temperature (but neglecting thermally activated processes), we compare the rate-independent hysteresis loops obtained in the random field Ising model when controlling either the external magnetic field H or the extensive magnetization M. Two distinct behaviors are observed, depending on disorder strength. At large disorder, the H-driven and M-driven protocols yield identical hysteresis loops in the thermodynamic limit. At low disorder, when the H-driven magnetization curve is discontinuous (due to the presence of a macroscopic avalanche), the M-driven loop is reentrant while the induced field exhibits strong intermittent fluctuations and is only weakly self-averaging. The relevance of these results to the experimental observations in ferromagnetic materials, shape memory alloys, and other disordered systems is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show how macroscopic manifestations of P (and T) symmetry breaking can arise in a simple system subject to Aharonov-Bohm interactions. Specifically, we study the conductivity of a gas of charged particles moving through a dilute array of flux tubes. The interaction of the electrons with the flux tubes is taken to be of a purely Aharonov-Bohm type. We find that the system exhibits a nonzero transverse conductivity, i.e., a spontaneous Hall effect. This is in contrast to the fact that the cross sections for both scattering and bremsstrahlung (soft-photon emission) of a single electron from a flux tube are invariant under reflections. We argue that the asymmetry in the conductivity coefficients arises from many-body effects. On the other hand, the transverse conductivity has the same dependence on universal constants that appears in the quantum Hall effect, a result that we relate to the validity of the mean-field approximation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate chaotic, memory, and cooling rate effects in the three-dimensional Edwards-Anderson model by doing thermoremanent (TRM) and ac susceptibility numerical experiments and making a detailed comparison with laboratory experiments on spin glasses. In contrast to the experiments, the Edwards-Anderson model does not show any trace of reinitialization processes in temperature change experiments (TRM or ac). A detailed comparison with ac relaxation experiments in the presence of dc magnetic field or coupling distribution perturbations reveals that the absence of chaotic effects in the Edwards-Anderson model is a consequence of the presence of strong cooling rate effects. We discuss possible solutions to this discrepancy, in particular the smallness of the time scales reached in numerical experiments, but we also question the validity of the Edwards-Anderson model to reproduce the experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ab initio cluster model approach has been used to study the electronic structure and magnetic coupling of KCuF3 and K2CuF4 in their various ordered polytype crystal forms. Due to a cooperative Jahn-Teller distortion these systems exhibit strong anisotropies. In particular, the magnetic properties strongly differ from those of isomorphic compounds. Hence, KCuF3 is a quasi-one-dimensional (1D) nearest neighbor Heisenberg antiferromagnet whereas K2CuF4 is the only ferromagnet among the K2MF4 series of compounds (M=Mn, Fe, Co, Ni, and Cu) behaving all as quasi-2D nearest neighbor Heisenberg systems. Different ab initio techniques are used to explore the magnetic coupling in these systems. All methods, including unrestricted Hartree-Fock, are able to explain the magnetic ordering. However, quantitative agreement with experiment is reached only when using a state-of-the-art configuration interaction approach. Finally, an analysis of the dependence of the magnetic coupling constant with respect to distortion parameters is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delta isobar components in the nuclear many-body wave function are investigated for the deuteron, light nuclei (16O), and infinite nuclear matter within the framework of the coupled-cluster theory. The predictions derived for various realistic models of the baryon-baryon interaction are compared to each other. These include local (V28) and nonlocal meson exchange potentials (Bonn2000) but also a model recently derived by the Salamanca group accounting for quark degrees of freedom. The characteristic differences which are obtained for the NDelta and Delta Delta correlation functions are related to the approximation made in deriving the matrix elements for the baryon-baryon interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Embedded systems, especially Wireless Sensor Nodes are highly prone to Type Safety and Memory Safety issues. Contiki, a prominent Operating System in the domain is even more affected by the problem since it makes extensive use of Type casts and Pointers. The work is an attempt to nullify the possibility of Safety violations in Contiki. We use a powerful, still efficient tool called Deputy to achieve this. We also try to automate the process

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Embedded systems, especially Wireless Sensor Nodes are highly prone to Type Safety and Memory Safety issues. Contiki, a prominent Operating System in the domain is even more affected by the problem since it makes extensive use of Type casts and Pointers. The work is an attempt to nullify the possibility of Safety violations in Contiki. We use a powerful, still efficient tool called Deputy to achieve this. We also try to automate the process

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the implementation details of a child friendly, good quality, English text-to-speech (TTS) system that is phoneme-based, concatenative, easy to set up and use with little memory. Direct waveform concatenation and linear prediction coding (LPC) are used. Most existing TTS systems are unit-selection based, which use standard speech databases available in neutral adult voices.Here reduced memory is achieved by the concatenation of phonemes and by replacing phonetic wave files with their LPC coefficients. Linguistic analysis was used to reduce the algorithmic complexity instead of signal processing techniques. Sufficient degree of customization and generalization catering to the needs of the child user had been included through the provision for vocabulary and voice selection to suit the requisites of the child. Prosody had also been incorporated. This inexpensive TTS systemwas implemented inMATLAB, with the synthesis presented by means of a graphical user interface (GUI), thus making it child friendly. This can be used not only as an interesting language learning aid for the normal child but it also serves as a speech aid to the vocally disabled child. The quality of the synthesized speech was evaluated using the mean opinion score (MOS).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bank switching in embedded processors having partitioned memory architecture results in code size as well as run time overhead. An algorithm and its application to assist the compiler in eliminating the redundant bank switching codes introduced and deciding the optimum data allocation to banked memory is presented in this work. A relation matrix formed for the memory bank state transition corresponding to each bank selection instruction is used for the detection of redundant codes. Data allocation to memory is done by considering all possible permutation of memory banks and combination of data. The compiler output corresponding to each data mapping scheme is subjected to a static machine code analysis which identifies the one with minimum number of bank switching codes. Even though the method is compiler independent, the algorithm utilizes certain architectural features of the target processor. A prototype based on PIC 16F87X microcontrollers is described. This method scales well into larger number of memory blocks and other architectures so that high performance compilers can integrate this technique for efficient code generation. The technique is illustrated with an example

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of self-assembly as a strategy for the synthesis has been confined largely to molecules, because of the importance of manipulating the structure of matter at the molecular scale. We have investigated the influence of temperature and pH, in addition to the concentration of the capping agent used for the formation of the nano-bio conjugates. For example, the formation of the narrower size distribution of the nanoparticles was observed with the increase in the concentration of the protein, which supports the fact that γ-globulin acts both as a controller of nucleation as well as stabiliser. As analyzed through various photophysical, biophysical and microscopic techniques such as TEM, AFM, C-AFM, SEM, DLS, OPM, CD and FTIR, we observed that the initial photoactivation of γ-globulin at pH 12 for 3 h resulted in small protein fibres of ca. Further irradiation for 24 h, led to the formation of selfassembled long fibres of the protein of ca. 5-6 nm and observation of surface plasmon resonance band at around 520 nm with the concomitant quenching of luminescence intensity at 680 nm. The observation of light triggered self-assembly of the protein and its effect on controlling the fate of the anchored nanoparticles can be compared with the naturally occurring process such as photomorphogenesis.Furthermore,our approach offers a way to understand the role played by the self-assembly of the protein in ordering and knock out of the metal nanoparticles and also in the design of nano-biohybrid materials for medicinal and optoelectronic applications. Investigation of the potential applications of NIR absorbing and water soluble squaraine dyes 1-3 for protein labeling and anti-amyloid agents forms the subject matter of the third chapter of the thesis. The study of their interactions with various proteins revealed that 1-3 showed unique interactions towards serum albumins as well as lysozyme. 69%, 71% and 49% in the absorption spectra as well as significant quenching in the fluorescence intensity of the dyes 1-3, respectively. Half-reciprocal analysis of the absorption data and isothermal titration calorimetric (ITC) analysis of the titration experiments gave a 1:1 stoichiometry for the complexes formed between the lysozyme and squaraine dyes with association constants (Kass) in the range 104-105 M-1. We have determined the changes in the free energy (ΔG) for the complex formation and the values are found to be -30.78, -32.31 and -28.58 kJmol-1, respectively for the dyes 1, 2 and 3. Furthermore, we have observed a strong induced CD (ICD) signal corresponding to the squaraine chromophore in the case of the halogenated squaraine dyes 2 and 3 at 636 and 637 nm confirming the complex formation in these cases. To understand the nature of interaction of the squaraine dyes 1-3 with lysozyme, we have investigated the interaction of dyes 1-3 with different amino acids. These results indicated that the dyes 1-3 showed significant interactions with cysteine and glutamic acid which are present in the side chains of lysozyme. In addition the temperature dependent studies have revealed that the interaction of the dye and the lysozyme are irreversible. Furthermore, we have investigated the interactions of these NIR dyes 1-3 with β- amyloid fibres derived from lysozyme to evaluate their potential as inhibitors of this biologically important protein aggregation. These β-amyloid fibrils were insoluble protein aggregates that have been associated with a range of neurodegenerative diseases, including Huntington, Alzheimer’s, Parkinson’s, and Creutzfeldt-Jakob diseases. We have synthesized amyloid fibres from lysozyme through its incubation in acidic solution below pH 4 and by allowing to form amyloid fibres at elevated temperature. To quantify the binding affinities of the squaraine dyes 1-3 with β-amyloids, we have carried out the isothermal titration calorimetric (ITC) measurements. The association constants were determined and are found to be 1.2 × 105, 3.6× 105 and 3.2 × 105 M-1 for the dyes, 1-3, respectively. To gain more insights into the amyloid inhibiting nature of the squaraine dyes under investigations, we have carried out thioflavin assay, CD, isothermal titration calorimetry and microscopic analysis. The addition of the dyes 1-3 (5μM) led to the complete quenching in the apparent thioflavin fluorescence, thereby indicating the destabilization of β-amyloid fibres in the presence of the squaraine dyes. Further, the inhibition of the amyloid fibres by the squaraine dyes 1-3, has been evidenced though the DLS, TEM AFM and SAED, wherein we observed the complete destabilization of the amyloid fibre and transformation of the fibre into spherical particles of ca. These results demonstrate the fact that the squaraine dyes 1-3 can act as protein labeling agents as well as the inhibitors of the protein amyloidogenesis. The last chapter of the thesis describes the synthesis and investigation of selfassembly as well as bio-imaging aspects of a few novel tetraphenylethene conjugates 4-6.Expectedly, these conjugates showed significant solvatochromism and exhibited a hypsochromic shift (negative solvatochromism) as the solvent polarity increased, and these observations were justified though theoretical studies employing the B3LYP/6-31g method. We have investigated the self-assembly properties of these D-A conjugates though variation in the percentage of water in acetonitrile solution due to the formation of nanoaggregates. Further the contour map of the observed fluorescence intensity as a function of the fluorescence excitation and emission wavelength confirmed the formation of J-type aggregates in these cases. To have a better understanding of the type of self-assemblies formed from the TPE conjugates 4-6, we have carried out the morphological analysis through various microscopic techniques such as DLS, SEM and TEM. 70%, we observed rod shape architectures having ~ 780 nm in diameter and ~ 12 μM in length as evidenced through TEM and SEM analysis. We have made similar observations with the dodecyl conjugate 5 at ca. 70% and 50% water/acetonitrile mixtures, the aggregates formed from 4 and 5 were found to be highly crystalline and such structures were transformed to amorphous nature as the water fraction was increased to 99%. To evaluate the potential of the conjugate as bio-imaging agents, we have carried out their in vitro cytotoxicity and cellular uptake studies though MTT assay, flow cytometric and confocal laser scanning microscopic techniques. Thus nanoparticle of these conjugates which exhibited efficient emission, large stoke shift, good stability, biocompatibility and excellent cellular imaging properties can have potential applications for tracking cells as well as in cell-based therapies. In summary we have synthesized novel functional organic chromophores and have studied systematic investigation of self-assembly of these synthetic and biological building blocks under a variety of conditions. The investigation of interaction of water soluble NIR squaraine dyes with lysozyme indicates that these dyes can act as the protein labeling agents and the efficiency of inhibition of β-amyloid indicate, thereby their potential as anti-amyloid agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A conceptual information system consists of a database together with conceptual hierarchies. The management system TOSCANA visualizes arbitrary combinations of conceptual hierarchies by nested line diagrams and allows an on-line interaction with a database to analyze data conceptually. The paper describes the conception of conceptual information systems and discusses the use of their visualization techniques for on-line analytical processing (OLAP).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the vision of Mark Weiser on ubiquitous computing, computers are disappearing from the focus of the users and are seamlessly interacting with other computers and users in order to provide information and services. This shift of computers away from direct computer interaction requires another way of applications to interact without bothering the user. Context is the information which can be used to characterize the situation of persons, locations, or other objects relevant for the applications. Context-aware applications are capable of monitoring and exploiting knowledge about external operating conditions. These applications can adapt their behaviour based on the retrieved information and thus to replace (at least a certain amount) the missing user interactions. Context awareness can be assumed to be an important ingredient for applications in ubiquitous computing environments. However, context management in ubiquitous computing environments must reflect the specific characteristics of these environments, for example distribution, mobility, resource-constrained devices, and heterogeneity of context sources. Modern mobile devices are equipped with fast processors, sufficient memory, and with several sensors, like Global Positioning System (GPS) sensor, light sensor, or accelerometer. Since many applications in ubiquitous computing environments can exploit context information for enhancing their service to the user, these devices are highly useful for context-aware applications in ubiquitous computing environments. Additionally, context reasoners and external context providers can be incorporated. It is possible that several context sensors, reasoners and context providers offer the same type of information. However, the information providers can differ in quality levels (e.g. accuracy), representations (e.g. position represented in coordinates and as an address) of the offered information, and costs (like battery consumption) for providing the information. In order to simplify the development of context-aware applications, the developers should be able to transparently access context information without bothering with underlying context accessing techniques and distribution aspects. They should rather be able to express which kind of information they require, which quality criteria this information should fulfil, and how much the provision of this information should cost (not only monetary cost but also energy or performance usage). For this purpose, application developers as well as developers of context providers need a common language and vocabulary to specify which information they require respectively they provide. These descriptions respectively criteria have to be matched. For a matching of these descriptions, it is likely that a transformation of the provided information is needed to fulfil the criteria of the context-aware application. As it is possible that more than one provider fulfils the criteria, a selection process is required. In this process the system has to trade off the provided quality of context and required costs of the context provider against the quality of context requested by the context consumer. This selection allows to turn on context sources only if required. Explicitly selecting context services and thereby dynamically activating and deactivating the local context provider has the advantage that also the resource consumption is reduced as especially unused context sensors are deactivated. One promising solution is a middleware providing appropriate support in consideration of the principles of service-oriented computing like loose coupling, abstraction, reusability, or discoverability of context providers. This allows us to abstract context sensors, context reasoners and also external context providers as context services. In this thesis we present our solution consisting of a context model and ontology, a context offer and query language, a comprehensive matching and mediation process and a selection service. Especially the matching and mediation process and the selection service differ from the existing works. The matching and mediation process allows an autonomous establishment of mediation processes in order to transfer information from an offered representation into a requested representation. In difference to other approaches, the selection service selects not only a service for a service request, it rather selects a set of services in order to fulfil all requests which also facilitates the sharing of services. The approach is extensively reviewed regarding the different requirements and a set of demonstrators shows its usability in real-world scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We are currently at the cusp of a revolution in quantum technology that relies not just on the passive use of quantum effects, but on their active control. At the forefront of this revolution is the implementation of a quantum computer. Encoding information in quantum states as “qubits” allows to use entanglement and quantum superposition to perform calculations that are infeasible on classical computers. The fundamental challenge in the realization of quantum computers is to avoid decoherence – the loss of quantum properties – due to unwanted interaction with the environment. This thesis addresses the problem of implementing entangling two-qubit quantum gates that are robust with respect to both decoherence and classical noise. It covers three aspects: the use of efficient numerical tools for the simulation and optimal control of open and closed quantum systems, the role of advanced optimization functionals in facilitating robustness, and the application of these techniques to two of the leading implementations of quantum computation, trapped atoms and superconducting circuits. After a review of the theoretical and numerical foundations, the central part of the thesis starts with the idea of using ensemble optimization to achieve robustness with respect to both classical fluctuations in the system parameters, and decoherence. For the example of a controlled phasegate implemented with trapped Rydberg atoms, this approach is demonstrated to yield a gate that is at least one order of magnitude more robust than the best known analytic scheme. Moreover this robustness is maintained even for gate durations significantly shorter than those obtained in the analytic scheme. Superconducting circuits are a particularly promising architecture for the implementation of a quantum computer. Their flexibility is demonstrated by performing optimizations for both diagonal and non-diagonal quantum gates. In order to achieve robustness with respect to decoherence, it is essential to implement quantum gates in the shortest possible amount of time. This may be facilitated by using an optimization functional that targets an arbitrary perfect entangler, based on a geometric theory of two-qubit gates. For the example of superconducting qubits, it is shown that this approach leads to significantly shorter gate durations, higher fidelities, and faster convergence than the optimization towards specific two-qubit gates. Performing optimization in Liouville space in order to properly take into account decoherence poses significant numerical challenges, as the dimension scales quadratically compared to Hilbert space. However, it can be shown that for a unitary target, the optimization only requires propagation of at most three states, instead of a full basis of Liouville space. Both for the example of trapped Rydberg atoms, and for superconducting qubits, the successful optimization of quantum gates is demonstrated, at a significantly reduced numerical cost than was previously thought possible. Together, the results of this thesis point towards a comprehensive framework for the optimization of robust quantum gates, paving the way for the future realization of quantum computers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since no physical system can ever be completely isolated from its environment, the study of open quantum systems is pivotal to reliably and accurately control complex quantum systems. In practice, reliability of the control field needs to be confirmed via certification of the target evolution while accuracy requires the derivation of high-fidelity control schemes in the presence of decoherence. In the first part of this thesis an algebraic framework is presented that allows to determine the minimal requirements on the unique characterisation of arbitrary unitary gates in open quantum systems, independent on the particular physical implementation of the employed quantum device. To this end, a set of theorems is devised that can be used to assess whether a given set of input states on a quantum channel is sufficient to judge whether a desired unitary gate is realised. This allows to determine the minimal input for such a task, which proves to be, quite remarkably, independent of system size. These results allow to elucidate the fundamental limits regarding certification and tomography of open quantum systems. The combination of these insights with state-of-the-art Monte Carlo process certification techniques permits a significant improvement of the scaling when certifying arbitrary unitary gates. This improvement is not only restricted to quantum information devices where the basic information carrier is the qubit but it also extends to systems where the fundamental informational entities can be of arbitary dimensionality, the so-called qudits. The second part of this thesis concerns the impact of these findings from the point of view of Optimal Control Theory (OCT). OCT for quantum systems utilises concepts from engineering such as feedback and optimisation to engineer constructive and destructive interferences in order to steer a physical process in a desired direction. It turns out that the aforementioned mathematical findings allow to deduce novel optimisation functionals that significantly reduce not only the required memory for numerical control algorithms but also the total CPU time required to obtain a certain fidelity for the optimised process. The thesis concludes by discussing two problems of fundamental interest in quantum information processing from the point of view of optimal control - the preparation of pure states and the implementation of unitary gates in open quantum systems. For both cases specific physical examples are considered: for the former the vibrational cooling of molecules via optical pumping and for the latter a superconducting phase qudit implementation. In particular, it is illustrated how features of the environment can be exploited to reach the desired targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study aims to analyse factors affecting contributions of goat farming to household economic success and food security in three goat production systems of Ethiopia. A study was conducted in three districts of Ethiopia representing arid agro-pastoral (AAP), semi-arid agro-pastoral (SAAP) and highland mixed crop-livestock (HMCL) systems involving 180 goat keeping households. Gross margin (GM) and net benefit (NB1 and NB2) were used as indicators of economic success of goat keeping. NB1 includes in-kind benefits of goats (consumption and manure), while NB2 additionally constitutes intangible benefits (insurance and finance). Household dietary diversity score (HDDS) was used as a proxy indicator of food security. GM was significantly affected by an off-take rate and flock size interaction (P<0.001). The increment of GM due to increased off-take rate was more prominent for farmers with bigger flocks. Interaction between flock size and production system significantly (P<0.001) affected both NB1 and NB2. The increment of NB1 and NB2 by keeping larger flocks was higher in AAP system, due to higher in-kind and intangible benefits of goats in this system. Effect of goat flock size as a predictor of household dietary diversity was not significant (P>0.05). Nevertheless, a significant positive correlation (P<0.05) was observed between GM from goats and HDDS in AAP system, indicating the indirect role of goat production for food security. The study indicated that extent of utilising tangible and intangible benefits of goats varied among production systems and these differences should be given adequate attention in designing genetic improvement programs.