923 resultados para Low-power links
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in "cold-wall" reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Low-intensity laser has been used as a physical agent in various fields of medical sciences such as bone and tissue repair. Meanwhile little is known about its effects in adverse conditions such as abolition of load and osteopenic. With the assumption that the laser Ga-Al-As accelerates the process of bone consolidation, goal of this study was to evaluate bone mineral density (BMD) in incomplete transverse osteotomies of tibia in adult rats, treated with low power laser therapy in three different groups: G1 (n = 10), reference 15 days; G2 (n=10), suspended by the tail and, accordingly, treated with laser for 12 days; G3 (n = 10), suspended by the tail by 36 days and that after 21 days, there was laser treatment for 12 days. The right tibia treated with laser and left served as control. The laser was used to Ga-Al-As, DMC - Flash Lase® III, with wavelength 830nm, 100 mW, 4J, 140 J / cm ², 40s of application in 12 sessions. It was used densitometer-Lunar DPX®, with computer program for "small animals", and the analysis of BMD was made in the bone throughout the region and the osteotomy. The results showed no efficacy of laser therapy in the process of bone repair, both in animals of group 1, as in group 2 and 3. It follows that either the low-power laser was not an effective performance or the effects of laser therapy is not only manifested at the site of irradiation as well as the systemic level.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The Earth receives annually 1,5.1018 kWh of solar energy, which corresponds to 1000 times the world energy consumption in this period. This fact comes out that, besides being responsible for the maintenance of life on Earth, the solar radiation is in an inexhaustible energy source, with an enormous potential for use by systems capture and conversion into another form of energy. In many applications of low power systems that convert light directly into electricity, called photovoltaic advantageously replace other means of production processes, where its distribution is very significant. The determination of the power generated by such a system is of paramount importance for the design energy of its implementation and evaluation of the system itself. This study aims to determine a relationship between the maximum power generated by solar photovoltaic and characteristic parameters of the generator. This relationship allows to evaluate the performance of such a system. For simulations of the developed equations were used 3 photovoltaic modules with an output of 100 Wp each, and data collection was performed during one year by enrolling in addition to meteorological data, solar irradiance incident on the modules.
Resumo:
This work aims to present the electrical behavior of two mechanical processing equipment of wood, the saw vertical tape and the wood chipper. Their characteristics in real operating conditions and the electrical behavior of devices in terms of energy efficiency is shown through the study of individual power factor are presented in this study. It was observed that both devices operate unloaded for some intervals of time and this contributes to a low power factor. It is concluded that improved production planning and better preparation of the operators in the operations of sawing wood, in order to improve the power factor in sawmills is necessary.
Resumo:
The aim of this trial was to investigate changes occurring in the subgingival microbiological composition of subjects with aggressive periodontitis, treated with antimicrobial photodynamic therapy (aPDT), in a single episode, or scaling and root planing (SRP), in a split-mouth design on -7, 0, and +90 days. Ten patients were randomly assigned to either aPDT using a laser source in conjunction with a photosensitizer or SRP with hand instruments. Subgingival plaque samples were collected and the counts of 40 subgingival species were determined using checkerboard DNA-DNA hybridization. The data were analyzed using the method of generalized estimating equations (GEE) to test the associations between treatments, evaluated parameters, and experimental times (alpha = .05). The results indicated that aPDT and SRP affects different bacterial species, with aPDT being effective in reducing numbers of A. actinomycetemcomitans than SRP. On the other hand, SRP was more efficient than aPDT in reducing the presence of periodontal pathogens of the Red Complex. Additionally, a recolonization in the sites treated by aPDT was observed, especially for T. forsythia and P. gingivalis. Under our experimental conditions, this trial demonstrates that aPDT and SRP affected different groups of bacteria, suggesting that their association may be beneficial for the non-surgical treatment of aggressive periodontitis.
TDEM survey in urban environmental for hydrogeological study at USP campus in Sao Paulo city, Brazil
Resumo:
In this work, some TDEM (Time Domain Electromagnetic) results at USP (University of Sao Paulo) campus in Sao Paulo city, Brazil, are presented. The data were acquired focusing on two mains objectives: (i) to map geoelectrical stratigraphy of Sao Paulo sedimentary basin, emphasizing on hydrogeological studies about sedimentary and crystalline aquifers, and (ii) to analyze the viability of TDEM data acquisition use in urban environment. The study area is located in Sao Paulo basin border, characterized by Resende and Sao Paulo formations, which are constituted by sand-clays sediments over a granite-gneissic basement. Two equipments were used in order to acquire database: Protem47 (low power), and Protem57-MK2 (high power). Capacitive noise affect obtained data with Protem47 due to the presence of metal pipes buried at IAG/USP (Institute of Astronomy, Geophysics, and Atmospheric Science) test site at USP. On the other hand, capacitive noise did not affect acquired data with Protem57-MK2, and the data present high signal to noise ratio. Surveys helped in determining sedimentary and crystalline aquifers, characterized by a fracture zone with water inside basin basement (conductive zone). Results show good agreement with local geology obtained from lithological boreholes located in the study areas. Moreover, it shows that TDEM method can be used in urban environments with a countless potential in hydrogeological studies, offering great reliability. Studies showed that main TDEM-method limitation at USP was the lack of space for opening the transmitter loop. Results are very promising and open new perspectives for TDEM-method use in urban environments as this area remains unexplored. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Objective: Antimicrobial photodynamic therapy (aPDT) has been used to combat local infections, and it consists of the combination of a photosensitizer, a light source, and reactive oxygen species (ROS) to kill microbial cells. In this study, we evaluated the effectiveness of aPDT in the treatment of candidiasis in HIV-infected patients. Methods: Twenty-one patients were divided into three groups. Control group (CG) was treated with the conventional medication for candidiasis (fluconazole 100 mg/day during 14 days). Laser group (LG) was subjected to low-level laser therapy (LLLT), wavelength 660 nm, power of 30 mW, and fluence of 7.5 J/cm(2), in contact with mucosa during 10 sec on the affected point. An aPDT group (aPDTG) was treated with aPDT, that is, combination of a low-power laser and methylene blue 450 mu g/mL. Pre-irradiation time was 1 min. Parameters of irradiation were the same ones as for the LG, and patients were single irradiated. Patients were clinically evaluated and culture analysis was performed before, immediately after, and 7, 15, and 30 days after the treatment. Results: Our results showed that fluconazole was effective; however, it did not prevent the return of the candidiasis in short-term. LLLT per se did not show any reduction on Candida spp. aPDT eradicated 100% of the colonies of this fungus and the patients did not show recurrence of candidiasis up to 30 days after the irradiation. Conclusions: These findings suggest that aPDT is a potential approach to oral candidiasis treatment in HIV-infected patients.