933 resultados para Lipids - Metabolism - Research
Resumo:
Four oligofructans (neokestose, 1-kestose, nystose, and an un-identified pentofructan) occurred in the vascular tissues and phloem sap of mature leaves of Agave deserti. Fructosyltransferases (responsible for fructan biosynthesis) also occurred in the vascular tissues. In contrast, oligofructans and fructosyltransferases were virtually absent from the chlorenchyma, suggesting that fructan biosynthesis was restricted to the vascular tissues. On a molar basis, these oligofructans accounted for 46% of the total soluble sugars in the vascular tissues (sucrose [Suc] for 26%) and for 19% in the phloem sap (fructose for 24% and Suc for 53%). The Suc concentration was 1.8 times higher in the cytosol of the chlorenchyma cells than in the phloem sap; the nystose concentration was 4.9 times higher and that of pentofructan was 3.2 times higher in the vascular tissues than in the phloem sap. To our knowledge, these results provide the first evidence that oligofructans are synthesized and transported in the phloem of higher plants. The polymer-trapping mechanism proposed for dicotyledonous C3 species may also be valid for oligofructan transport in monocotyledonous species, such as A. deserti, which may use a symplastic pathway for phloem loading of photosynthates in its mature leaves.
Resumo:
To identify the proteins induced by Fe deficiency, we have compared the proteins of Fe-sufficient and Fe-deficient barley (Hordeum vulgare L.) roots by two-dimensional polyacrylamide gel electrophoresis. Peptide sequence analysis of induced proteins revealed that formate dehydrogenase (FDH), adenine phosphoribosyltransferase, and the Ids3 gene product (for Fe deficiency-specific) increased in Fe-deficient roots. FDH enzyme activity was detected in Fe-deficient roots but not in Fe-sufficient roots. A cDNA encoding FDH (Fdh) was cloned and sequenced. Fdh expression was induced by Fe deficiency. Fdh was also expressed under anaerobic stress and its expression was more rapid than that induced by Fe deficiency. Thus, the expression of Fdh observed in Fe-deficient barley roots appeared to be a secondary effect caused by oxygen deficiency in Fe-deficient plants.
Resumo:
The metabolisms of arginine (Arg), ornithine (Orn), and putrescine were compared in a nontransgenic and a transgenic cell line of carrot (Daucus carota L.) expressing a mouse Orn decarboxylase cDNA. [14C]Arg, [14C]Orn, and [14C]putrescine were fed to cells and their rates of decarboxylation, uptake, metabolism into polyamines, and incorporation into acid-insoluble material were determined. Transgenic cells showed higher decarboxylation rates for labeled Orn than the nontransgenic cells. This was correlated positively with higher amounts of labeled putrescine production from labeled Orn. With labeled Arg, both the transgenic and the nontransgenic cells exhibited similar rates of decarboxylation and conversion into labeled putrescine. When [14C]putrescine was fed, higher rates of degradation were observed in transgenic cells as compared with the nontransgenic cells. It is concluded that (a) increased production of putrescine via the Orn decarboxylase pathway has no compensatory effects on the Arg decarboxylase pathway, and (b) higher rates of putrescine production in the transgenic cells are accompanied by higher rates of putrescine conversion into spermidine and spermine as well as the catabolism of putrescine.
Resumo:
Honeybees rely primarily on the oxidation of hexose sugars to provide the energy required for flight. Measurement of VCO2 (equal to VO2, because VCO2/VO2 = 1.0 during carbohydrate oxidation) during flight allowed estimation of steady-state flux rates through pathways of flight muscle energy metabolism. Comparison of Vmax values for flight muscle hexokinase, phosphofructokinase, citrate synthase, and cytochrome c oxidase with rates of carbon and O2 flux during flight reveal that these enzymes operate closer to Vmax in the flight muscles of flying honeybees than in other muscles previously studied. Possible mechanistic and evolutionary implications of these findings are discussed.
Guanidinium-cholesterol cationic lipids: efficient vectors for the transfection of eukaryotic cells.
Resumo:
Two cationic lipids, bis-guanidinium-spermidine-cholesterol (BGSC) and bis-guanidinium-trencholesterol (BGTC)-cholesterol derivatives bearing two guanidinium groups-have been synthesized and tested as artificial vectors for gene transfer. They combine the membrane compatible features of the cholesterol subunit and the favorable structural and high pKa features of the guanidinium functions for binding DNA via its phosphate groups. Reagent BGTC is very efficient for transfection into a variety of mammalian cell lines when used as a micellar solution. In addition, both BGTC and BGSC present also a high transfection activity when formulated as liposomes with the neutral phospholipid dioleoylphosphatidyl ethanolamine. These results reveal the usefulness of cholesterol derivatives bearing guanidinium groups for gene transfer.
Resumo:
As an essential nutrient and a potential toxin, iron poses an exquisite regulatory problem in biology and medicine. At the cellular level, the basic molecular framework for the regulation of iron uptake, storage, and utilization has been defined. Two cytoplasmic RNA-binding proteins, iron-regulatory protein-1 (IRP-1) and IRP-2, respond to changes in cellular iron availability and coordinate the expression of mRNAs that harbor IRP-binding sites, iron-responsive elements (IREs). Nitric oxide (NO) and oxidative stress in the form of H2O2 also signal to IRPs and thereby influence cellular iron metabolism. The recent discovery of two IRE-regulated mRNAs encoding enzymes of the mitochondrial citric acid cycle may represent the beginnings of elucidating regulatory coupling between iron and energy metabolism. In addition to providing insights into the regulation of iron metabolism and its connections with other cellular pathways, the IRE/IRP system has emerged as a prime example for the understanding of translational regulation and mRNA stability control. Finally, IRP-1 has highlighted an unexpected role for iron sulfur clusters as post-translational regulatory switches.
Resumo:
Amide derivatives of fatty acids were recently isolated from cerebrospinal fluid of sleep-deprived animals and found to induce sleep in rats. To determine which brain receptors might be sensitive to these novel neuromodulators, we tested them on a range of receptors expressed in Xenopus oocytes. cis-9,10-Octadecenamide (ODA) markedly potentiated the action of 5-hydroxytryptamine (5-HT) on 5-HT2A and 5-HT2C receptors, but this action was not shared by related compounds such as oleic acid and trans-9,10-octacenamide. ODA was active at concentrations as low as 1 nM. The saturated analog, octadecanamide, inhibited rather than potentiated 5-HT2C responses. ODA had either no effect or only weak effects on other receptors, including muscarinic cholinergic, metabotropic glutamate, GABA(A), N-methyl-D-asparate, or alpha-amino-3-hydroxy-5-methyl-4-isoxozolepropionic acid receptors. Modulation of 5-HT2 receptors by ODA and related lipids may represent a novel mechanism for regulation of receptors that activate G proteins and thereby play a role in alertness, sleep, and mood as well as disturbances of these states.
Resumo:
RNA editing in the nucleus of higher eukaryotes results in subtle changes to the RNA sequence, with the ability to effect dramatic changes in biological function. The first example to be described and among the best characterized, is the cytidine-to-uridine editing of apolipoprotein B (apo-B) RNA. The editing of apo-B RNA is mediated by a novel cytidine deaminase, apobec-1, which has acquired the ability to bind RNA. The stop translation codon generated by the editing of apo-B RNA truncates the full-length apo-B100 to form apo-B48. The recent observations of tumor formation in Apobec-1 transgenic animals, together with the fact that Apobec-1 is expressed in numerous tissues lacking apo-B, raises the issue of whether this enzyme is essential for a variety of posttranscriptional editing events. To directly test this, mice were created with a null mutation in Apobec-1 using homologous recombination in embryonic stem cells. Mice, homozygous for this mutation, were viable and made apo-B100 but not apo-B48. The null animals were fertile, and a variety of histological, behavioral, and morphological analyses revealed no phenotype other than abnormalities in lipoprotein metabolism, which included an increased low density lipoprotein fraction and a reduction in high density lipoprotein cholesterol. These studies demonstrate that neither apobec-1 nor apo-B48 is essential for viability and suggest that the major role of apobec-1 may be confined to the modulation of lipid transport.
Resumo:
Nucleoside diphosphate (NDP) kinase is a ubiquitous nonspecific enzyme that evidently is designed to catalyze in vivo ATP-dependent synthesis of ribo- and deoxyribonucleoside triphosphates from the corresponding diphosphates. Because Escherichia coli contains only one copy of ndk, the structural gene for this enzyme, we were surprised to find that ndk disruption yields bacteria that are still viable. These mutant cells contain a protein with a small amount NDP kinase activity. The protein responsible for this activity was purified and identified as adenylate kinase. This enzyme, also called myokinase, catalyzes the reversible ATP-dependent synthesis of ADP from AMP. We found that this enzyme from E. coli as well as from higher eukaryotes has a broad substrate specificity displaying dual enzymatic functions. Among the nucleoside monophosphate kinases tested, only adenylate kinase was found to have NDP kinase activity. To our knowledge, this is the first report of NDP kinase activity associated with adenylate kinase.
Resumo:
The extracellular matrix (ECM) is an intricate network composed of an array of macromolecules capable of regulating the functional responsiveness of cells. Its composition greatly varies among different types of tissue, and dysregulation of its metabolism may contribute to vascular remodeling during the pathogenesis of various diseases, including atherosclerosis. In view of their antiatherosclerotic effects, the role of Ca2+ channel blockers in the metabolism of ECM was examined. Nanomolar concentrations of the five Ca2+ channel blockers amlodipine, felodipine, manidipine, verapamil, or diltiazem significantly decreased both the constitutive and platelet-derived growth factor BB-dependent collagen deposition in the ECM formed by human vascular smooth muscle cells and fibroblasts. The drugs inhibited the expression of fibrillar collagens type I and III and of basement membrane type IV collagen. Furthermore, Ca2+ channel blockers specifically increased the proteolytic activity of the 72-kDa type IV collagenase as shown by gelatin zymography and inhibited the transcription of tissue inhibitor of metalloproteinases-2.
Resumo:
Various compounds that affect signal transduction regulate the relative utilization of alternative processing pathways for the beta-amyloid precursor protein (beta APP) in intact cells, increasing the production of nonamyloidogenic soluble beta APP (s beta APP) and decreasing that of amyloidogenic beta-amyloid peptide. In a recent study directed toward elucidating the mechanisms underlying phorbol ester-stimulated s beta APP secretion from cells, it was demonstrated that protein kinase C increases the formation from the trans-Golgi network (TGN) of beta APP-containing secretory vesicles. Here we present evidence that forskolin increases s beta APP production from intact PC12 cells, and protein kinase A stimulates formation from the TGN of beta APP-containing vesicles. Although protein kinase A and protein kinase C converge at the level of formation from the TGN of beta APP-containing vesicles, additional evidence indicates that the regulatory mechanisms involved are distinct.
Resumo:
We have isolated a human cDNA clone encoding the mammalian homolog of stanniocalcin (STC), a calcium- and phosphate-regulating hormone that was first described in fishes where it functions in preventing hypercalcemia. STC has a unique amino acid sequence and, until now, has remained one of the few polypeptide hormones never described in higher vertebrates. Human STC (hSTC) was found to be 247 amino acids long and to share 73% amino acid sequence similarity with fish STC. Polyclonal antibodies to recombinant hSTC localized to a distinct cell type in the nephron tubule, suggesting kidney as a possible site of synthesis. Recombinant hSTC inhibited the gill transport of calcium when administered to fish and stimulated renal phosphate reabsorption in the rat. The evidence suggests that mammalian STC, like its piscine counterpart, is a regulator of mineral homeostasis.
Resumo:
Hemochromatosis (HC) is an inherited disorder of iron absorption, mapping within the human major histocompatibility complex (MHC). We have identified a multigene system in the murine MHC that contains excellent candidates for the murine equivalent of the human HC locus and implicate nonclassical class I genes in the control of iron absorption. This gene system is characterized by multiple copies of two head-to-head genes encoded on opposite strands and driven by one common regulatory motif. This regulatory motif has a striking homology to the promoter region of the beta-globin gene, a gene obviously involved in iron metabolism and hence termed beta-globin analogous promoter (betaGAP). Upstream of the betaGAP sequence are nonclassical class I genes. At least one of these nonclassical class I genes, Q2, is expressed in the gastrointestinal tract, the primary site of iron absorption. Also expressed in the gastrointestinal tract and downstream of the betaGAP motif is a second set of putative genes, termed Hephaestus (HEPH). Based on these observations, we hypothesized that the genes that seem to be controlled by the betaGAP regulatory motifs would be responsible for the control of Fe absorption. As a test of this hypothesis, we predicted that mice which have altered expression of class I gene products, the beta2-microglobulin knockout mice, [beta2m(-/-)], would develop Fe overload. This prediction was confirmed, and these results indicate beta2m-associated proteins are involved in the control of intestinal Fe absorption.
Resumo:
Cytochrome P450 1A2 (CYP1A2) is a predominantly hepatic enzyme known to be important in the metabolism of numerous foreign chemicals of pharmacologic, toxicologic, and carcinogenic significance. CYP1A2 substrates include aflatoxin B1, acetaminophen, and a variety of environmental arylamines. To define better the developmental and metabolic functions of this enzyme, we developed a CYP1A2-deficient mouse line by homologous recombination in embryonic stem cells. Mice homozygous for the targeted Cyp1a2 gene, designated Cyp1a2(-/-), are completely viable and fertile; histologic examination of 15-day embryos, newborn pups, and 3-week-old mice revealed no abnormalities. No CYP1A2 mRNA was detected by Northern blot analysis. Moreover, mRNA levels of Cyp1a1, the other gene in the same subfamily, appear unaffected by loss of the Cyp1a2 gene. Because the muscle relaxant zoxazolamine is a known substrate for CYP1A2, we studied the Cyp1a2(-/-) genotype by using the zoxazolamine paralysis test: the Cyp1a2(-/-) mice exhibited dramatically lengthened paralysis times relative to the Cyp1a2(+/+) wild-type animals, and the Cyp1a2(+/-) heterozygotes showed an intermediate effect. Availability of a viable and fertile CYP1A2-deficient mouse line will provide a valuable tool for researchers wishing to define the precise role of CYP1A2 in numerous metabolic and pharmacokinetic processes.
Resumo:
Transcription from the housekeeping promoter for the acetyl coenzyme A carboxylase (ACC) gene, which encodes the rate-controlling enzyme of fatty acid biosynthesis, is shown to be regulated by cellular sterol levels through novel binding sites for the sterol-sensitive sterol regulatory element binding protein (SREBP)-1 transcription factor. The position of the SREBP sites relative to those for the ubiquitous auxiliary transcription factor Sp1 is reminiscent of that previously described for the sterol-regulated low density lipoprotein receptor promoter. The experiments provide molecular evidence that the metabolism of fatty acids and cholesterol, two different classes of essential cellular lipids, are coordinately regulated by cellular lipid levels.