954 resultados para Lie algebra


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with a link between central extensions of N = 2 superconformal algebra and a supersymmetric two-component generalization of the Camassa-Holm equation. Deformations of superconformal algebra give rise to two compatible bracket structures. One of the bracket structures is derived from the central extension and admits a momentum operator which agrees with the Sobolev norm of a co-adjoint orbit element. The momentum operator induces, via Lenard relations, a chain of conserved Hamiltonians of the resulting supersymmetric Camassa-Holm hierarchy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We work on some general extensions of the formalism for theories which preserve the relativity of inertial frames with a nonlinear action of the Lorentz transformations on momentum space. Relativistic particle models invariant under the corresponding deformed symmetries are presented with particular emphasis on deformed dilatation transformations. The algebraic transformations relating the deformed symmetries with the usual (undeformed) ones are provided in order to preserve the Lorentz algebra. Two distinct cases are considered: a deformed dilatation transformation with a spacelike preferred direction and a very special relativity embedding with a lightlike preferred direction. In both analysis we consider the possibility of introducing quantum deformations of the corresponding symmetries such that the spacetime coordinates can be reconstructed and the particular form of the real space-momentum commutator remains covariant. Eventually feasible experiments, for which the nonlinear Lorentz dilatation effects here pointed out may be detectable, are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We point out that a common feature of integrable hierarchies presenting soliton solutions is the existence of some special ''vacuum solutions'' such that the Lax operators evaluated on them, lie in some abelian subalgebra of the associated Kac-Moody algebra. The soliton solutions are constructed out of those ''vacuum solitons'' by the dressing transformation procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Letter we investigate Lie symmetries of a (2 + 1)-dimensional integrable generalization of the Camassa-Holm (CH) equation. Through the similarity reductions we obtain four different (1 + 1)-dimensional systems of partial differential equations in which one of them turns out to be a (1 + 1)-dimensional CH equation. We establish their integrability by providing the Lax pair for all of them. Further, we present a brief analysis for some types of particular solutions which include the cuspon, peakon and soliton solutions for the two-dimensional generalization of the CH equation. (C) 2000 Published by Elsevier B.V. B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The algebraic matrix hierarchy approach based on affine Lie sl(n) algebras leads to a variety of 1 + 1 soliton equations. By varying the rank of the underlying sl(n) algebra as well as its gradation in the affine setting, one encompasses the set of the soliton equations of the constrained KP hierarchy.The soliton solutions are then obtained as elements of the orbits of the dressing transformations constructed in terms of representations of the vertex operators of the affine sl(n) algebras realized in the unconventional gradations. Such soliton solutions exhibit non-trivial dependence on the KdV (odd) time flows and KP (odd and even) time Bows which distinguishes them From the conventional structure of the Darboux-Backlund-Wronskian solutions of the constrained KP hierarchy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inspired in recent works of Biedenham [1, 2] on the realization of the q-algebra su(q)(2), We show in this note that the condition [2j + 1](q) = N-q(j) = integer, implies the discretization of the deformation parameter alpha, where q = e(alpha). This discretization replaces the continuum associated to ct by an infinite sequence alpha(1), alpha(2), alpha(3),..., obtained for the values of j, which label the irreps of su(q)(2). The algebraic properties of N-q(j) are discussed in some detail, including its role as a trace, which conducts to the Clebsch-Gordan series for the direct product of irreps. The consequences of this process of discretization are discussed and its possible applications are pointed out. Although not a necessary one, the present prescription is valuable due to its algebraic simplicity especially in the regime of appreciable values of alpha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some methods have been developed to calculate the su(q)(2) Clebsch-Gordan coefficients (CGC). Here we develop a method based on the calculation of Clebsch-Gordan generating functions through the use of 'quantum algebraic' coherent states. Calculating the su(q)(2) CGC by means of this generating function is an easy and straightforward task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose general three-dimensional potentials in rotational and cylindrical parabolic coordinates which are generated by direct products of the SO(2, 1) dynamical group. Then we construct their Green functions algebraically and find their spectra. Particular cases of these potentials which appear in the literature are also briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction of Lie algebras in terms of Jordan algebra generators is discussed. The key to the construction is the triality relation already incorporated into matrix products. A generalisation to Kac-Moody algebras in terms of vertex operators is proposed and may provide a clue for the construction of new representations of Kac-Moody algebras in terms of Jordan fields. © 1988.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dirac wave equation is obtained in the non-Riemannian manifold of the Einstein-Schrödinger nonsymmetric theory. A new internal connection is determined in terms of complex vierbeins, which shows the coupling of the electromagnetic potential with gravity in the presence of a spin-1/2 field. © 1988 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a compact expression for the field theoretical actions based on the symplectic analysis of coadjoint orbits of Lie groups. The final formula for the action density α c becomes a bilinear form 〈(S, 1/λ), (y, m y)〉, where S is a 1-cocycle of the Lie group (a schwarzian type of derivative in conformai case), λ is a coefficient of the central element of the algebra and script Y sign ≡ (y, m y) is the generalized Maurer-Cartan form. In this way the action is fully determined in terms of the basic group theoretical objects. This result is illustrated on a number of examples, including the superconformal model with N = 2. In this case the method is applied to derive the N = 2 superspace generalization of the D=2 Polyakov (super-) gravity action in a manifest (2, 0) supersymmetric form. As a byproduct we also find a natural (2, 0) superspace generalization of the Beltrami equations for the (2, 0) supersymmetric world-sheet metric describing the transition from the conformal to the chiral gauge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We find that within the formalism of coadjoint orbits of the infinite dimensional Lie group the Noether procedure leads, for a special class of transformations, to the constant of motion given by the fundamental group one-cocycle S. Use is made of the simplified formula giving the symplectic action in terms of S and the Maurer-Cartan one-form. The area preserving diffeomorphisms on the torus T2=S1⊗S1 constitute an algebra with central extension, given by the Floratos-Iliopoulos cocycle. We apply our general treatment based on the symplectic analysis of coadjoint orbits of Lie groups to write the symplectic action for this model and study its invariance. We find an interesting abelian symmetry structure of this non-linear problem.