808 resultados para Lattice-based construction
Resumo:
The quality of information provision influences considerably knowledge construction driven by individual users’ needs. In the design of information systems for e-learning, personal information requirements should be incorporated to determine a selection of suitable learning content, instructive sequencing for learning content, and effective presentation of learning content. This is considered as an important part of instructional design for a personalised information package. The current research reveals that there is a lack of means by which individual users’ information requirements can be effectively incorporated to support personal knowledge construction. This paper presents a method which enables an articulation of users’ requirements based on the rooted learning theories and requirements engineering paradigms. The user’s information requirements can be systematically encapsulated in a user profile (i.e. user requirements space), and further transformed onto instructional design specifications (i.e. information space). These two spaces allow the discovering of information requirements patterns for self-maintaining and self-adapting personalisation that enhance experience in the knowledge construction process.
Resumo:
Information technologies are used across all stages of the construction process, and are crucial in the delivery of large projects. Drawing on detailed research on a construction megaproject, we take a practice-based approach to examining the practical and theoretical tensions between existing ways of working and the introduction of new coordination tools in this paper. We analyze the new hybrid practices that emerge, using insights from actor-network theory to articulate the delegation of actions to material and digital objects within ecologies of practice. The three vignettes that we discuss highlight this delegation of actions, the “plugging” and “patching” of ecologies occurring across media and the continual iterations of working practices between different types of media. By shifting the focus from tools to these wider ecologies of practice, the approach has important managerial mplications for the stabilization of new technologies and practices and for managing technological change on large construction projects. We conclude with a discussion of new directions for research, oriented to further elaborating on the importance of the material in understanding change.
Resumo:
This paper derives an efficient algorithm for constructing sparse kernel density (SKD) estimates. The algorithm first selects a very small subset of significant kernels using an orthogonal forward regression (OFR) procedure based on the D-optimality experimental design criterion. The weights of the resulting sparse kernel model are then calculated using a modified multiplicative nonnegative quadratic programming algorithm. Unlike most of the SKD estimators, the proposed D-optimality regression approach is an unsupervised construction algorithm and it does not require an empirical desired response for the kernel selection task. The strength of the D-optimality OFR is owing to the fact that the algorithm automatically selects a small subset of the most significant kernels related to the largest eigenvalues of the kernel design matrix, which counts for the most energy of the kernel training data, and this also guarantees the most accurate kernel weight estimate. The proposed method is also computationally attractive, in comparison with many existing SKD construction algorithms. Extensive numerical investigation demonstrates the ability of this regression-based approach to efficiently construct a very sparse kernel density estimate with excellent test accuracy, and our results show that the proposed method compares favourably with other existing sparse methods, in terms of test accuracy, model sparsity and complexity, for constructing kernel density estimates.
Resumo:
We develop a particle swarm optimisation (PSO) aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation.
Resumo:
A major infrastructure project is used to investigate the role of digital objects in the coordination of engineering design work. From a practice-based perspective, research emphasizes objects as important in enabling cooperative knowledge work and knowledge sharing. The term ‘boundary object’ has become used in the analysis of mutual and reciprocal knowledge sharing around physical and digital objects. The aim is to extend this work by analysing the introduction of an extranet into the public–private partnership project used to construct a new motorway. Multiple categories of digital objects are mobilized in coordination across heterogeneous, cross-organizational groups. The main findings are that digital objects provide mechanisms for accountability and control, as well as for mutual and reciprocal knowledge sharing; and that different types of objects are nested, forming a digital infrastructure for project delivery. Reconceptualizing boundary objects as a digital infrastructure for delivery has practical implications for management practices on large projects and for the use of digital tools, such as building information models, in construction. It provides a starting point for future research into the changing nature of digitally enabled coordination in project-based work.
Resumo:
Globalisation has prompted increasing numbers of construction profes-sional services (CPS) firms to internationalise and export their services. The driver has been twofold; firstly to increase turnover/profits and sec-ondly, to minimise the risk of a reliance on working in a single domestic market which has a fluctuating demand. Secondly, where firms have out-grown their domestic market, and in order to expand, they must export overseas. There has been little research into the way CPS firms operate overseas, yet construction represents approximately 10% of global GDP; this means that understanding CPS firms is important. This paper investigates how CPS firms internationalise and the drivers that impact their decisions and operations overseas. A survey was undertaken and interviews conducted that showed CPS firms are project driven, in-vesting heavily in the process of seeking work/bidding for projects, and are very focused on delivering projects with minimum risk. Increasing foreign ownership, changing procurement approaches and more consolidation of CPS firms in the global marketplace present a changing business land-scape. The research develops a framework of tangible and intangible factors, such as competencies, business organisation culture, leadership and reputation in order to better understand how CPS firms export their ser-vices. Whilst all CPS firms share the same framework of factors, the re-sulting synergies are different not only for each firm but also for each pro-ject. The knowledge-intensive and project-based nature of CPS firms presents a challenge in understanding the way they operate in the global service economy.
Resumo:
Ethnographic methodologies developed in social anthropology and sociology hold considerable promise for addressing practical, problem-based research concerned with the construction site. The extended researcher-engagement characteristic of ethnography reveals rich insights, yet is infrequently used to understand how workplace realities are lived out on construction sites. Moreover, studies that do employ these methods are rarely reported within construction research journals. This paper argues that recent innovations in ethnographic methodologies offer new routes to: posing questions; understanding workplace socialities (i.e. the qualities of the social relationships that develop on construction sites); learning about forms, uses and communication of knowledge on construction sites; and turning these into meaningful recommendations. This argument is supported by examples from an interdisciplinary ethnography concerning migrant workers and communications on UK construction sites. The presented research seeks to understand how construction workers communicate with managers and each other and how they stay safe on site, with the objective of informing site health-and-safety strategies and the production and evaluation of training and other materials.
Resumo:
Major construction clients are increasingly looking to procure built facilities on the basis of added value, rather than capital cost. Recent advances in the procurement of construction projects have emphasised a whole-life value approach to meeting the client’s objectives, with strategies put in place to encourage long-term commitment and through-life service provision. Construction firms are therefore increasingly required to take on responsibility for the operation and maintenance of the construction project on the client’s behalf - with the emphasis on value and service. This inevitably throws up a host of challenges, not the least of which is the need for construction firms to manage and accommodate the new emphasis on service. Indeed, these ‘service-led’ projects represent a new realm of construction projects where the rationale for the project is driven by client’s objectives with some aspect of service provision. This vision of downstream service delivery increases the number of stakeholders, adds to project complexity and challenges deeply-ingrained working practices. Ultimately it presents a major challenge for the construction sector. This paper sets out to unravel some of the many implications that this change brings with it. It draws upon ongoing research investigating how construction firms can adapt to a more service-orientated built environment and add value in project-based environments. The conclusions lay bare the challenges that firms face when trying to compete on the basis of added-value and service delivery. In particular, how it affects deeply-ingrained working practices and established relationships in the sector.
Resumo:
The method of entropy has been useful in evaluating inconsistency on human judgments. This paper illustrates an entropy-based decision support system called e-FDSS to the solution of multicriterion risk and decision analysis in projects of construction small and medium enterprises (SMEs). It is optimized and solved by fuzzy logic, entropy, and genetic algorithms. A case study demonstrated the use of entropy in e-FDSS on analyzing multiple risk criteria in the predevelopment stage of SME projects. Survey data studying the degree of impact of selected project risk criteria on different projects were input into the system in order to evaluate the preidentified project risks in an impartial environment. Without taking into account the amount of uncertainty embedded in the evaluation process; the results showed that all decision vectors are indeed full of bias and the deviations of decisions are finally quantified providing a more objective decision and risk assessment profile to the stakeholders of projects in order to search and screen the most profitable projects.
Resumo:
There is a growing concern in reducing greenhouse gas emissions all over the world. The U.K. has set 34% target reduction of emission before 2020 and 80% before 2050 compared to 1990 recently in Post Copenhagen Report on Climate Change. In practise, Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) tools have been introduced to construction industry in order to achieve this such as. However, there is clear a disconnection between costs and environmental impacts over the life cycle of a built asset when using these two tools. Besides, the changes in Information and Communication Technologies (ICTs) lead to a change in the way information is represented, in particular, information is being fed more easily and distributed more quickly to different stakeholders by the use of tool such as the Building Information Modelling (BIM), with little consideration on incorporating LCC and LCA and their maximised usage within the BIM environment. The aim of this paper is to propose the development of a model-based LCC and LCA tool in order to provide sustainable building design decisions for clients, architects and quantity surveyors, by then an optimal investment decision can be made by studying the trade-off between costs and environmental impacts. An application framework is also proposed finally as the future work that shows how the proposed model can be incorporated into the BIM environment in practise.
Resumo:
In financial decision-making processes, the adopted weights of the objective functions have significant impacts on the final decision outcome. However, conventional rating and weighting methods exhibit difficulty in deriving appropriate weights for complex decision-making problems with imprecise information. Entropy is a quantitative measure of uncertainty and has been useful in exploring weights of attributes in decision making. A fuzzy and entropy-based mathematical approach is employed to solve the weighting problem of the objective functions in an overall cash-flow model. The multiproject being undertaken by a medium-size construction firm in Hong Kong was used as a real case study to demonstrate the application of entropy. Its application in multiproject cash flow situations is demonstrated. The results indicate that the overall before-tax profit was HK$ 0.11 millions lower after the introduction of appropriate weights. In addition, the best time to invest in new projects arising from positive cash flow was identified to be two working months earlier than the nonweight system.
Resumo:
A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model robustness and adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the model subset selection cost function includes a D-optimality design criterion that maximizes the determinant of the design matrix of the subset to ensure the model robustness, adequacy, and parsimony of the final model. The proposed approach is based on the forward orthogonal least square (OLS) algorithm, such that new D-optimality-based cost function is constructed based on the orthogonalization process to gain computational advantages and hence to maintain the inherent advantage of computational efficiency associated with the conventional forward OLS approach. Illustrative examples are included to demonstrate the effectiveness of the new approach.
Resumo:
This paper introduces a new fast, effective and practical model structure construction algorithm for a mixture of experts network system utilising only process data. The algorithm is based on a novel forward constrained regression procedure. Given a full set of the experts as potential model bases, the structure construction algorithm, formed on the forward constrained regression procedure, selects the most significant model base one by one so as to minimise the overall system approximation error at each iteration, while the gate parameters in the mixture of experts network system are accordingly adjusted so as to satisfy the convex constraints required in the derivation of the forward constrained regression procedure. The procedure continues until a proper system model is constructed that utilises some or all of the experts. A pruning algorithm of the consequent mixture of experts network system is also derived to generate an overall parsimonious construction algorithm. Numerical examples are provided to demonstrate the effectiveness of the new algorithms. The mixture of experts network framework can be applied to a wide variety of applications ranging from multiple model controller synthesis to multi-sensor data fusion.
Resumo:
A connection between a fuzzy neural network model with the mixture of experts network (MEN) modelling approach is established. Based on this linkage, two new neuro-fuzzy MEN construction algorithms are proposed to overcome the curse of dimensionality that is inherent in the majority of associative memory networks and/or other rule based systems. The first construction algorithm employs a function selection manager module in an MEN system. The second construction algorithm is based on a new parallel learning algorithm in which each model rule is trained independently, for which the parameter convergence property of the new learning method is established. As with the first approach, an expert selection criterion is utilised in this algorithm. These two construction methods are equivalent in their effectiveness in overcoming the curse of dimensionality by reducing the dimensionality of the regression vector, but the latter has the additional computational advantage of parallel processing. The proposed algorithms are analysed for effectiveness followed by numerical examples to illustrate their efficacy for some difficult data based modelling problems.