966 resultados para Lateral rotation of the tibia
Resumo:
We investigate the resonant rotation of co-orbital bodies in eccentric and planar orbits. We develop a simple analytical model to study the impact of the eccentricity and orbital perturbations on the spin dynamics. This model is relevant in the entire domain of horseshoe and tadpole orbit, for moderate eccentricities. We show that there are three different families of spin-orbit resonances, one depending on the eccentricity, one depending on the orbital libration frequency, and another depending on the pericenter's dynamics. We can estimate the width and the location of the different resonant islands in the phase space, predicting which are the more likely to capture the spin of the rotating body. In some regions of the phase space the resonant islands may overlap, giving rise to chaotic rotation.
Resumo:
Background: Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only.Methods: A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made.Results: The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures.Conclusions: The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants. © 2010 Richter et al; licensee BioMed Central Ltd.
Resumo:
Settlement is a critical process in the life history of crabs, and thus affecting the abundance, distribution and structure of estuarine communities. The spatial pattern of settlement of megalopae of the shore crab Carcinus maenas along a longitudinal estuarine gradient (Mira River Estuary, Portugal) was examined, as well as its effects on the juvenile population. To measure megalopal settlement, four replicate collectors were deployed in six equally spaced stations along the estuarine axis. Juveniles were collected on the same locations with a quadrat randomly deployed on the substrate. To assess fine-scale megalopal settlement within a curved region of the estuary, replicate collectors were deployed on both margins along Moinho da Asneira curve. Megalopae settled differently along the six longitudinal points, with a tendency to attenuate their settlement upstream. Within the curved region, megalopae preferentially settled on the left margin collectors, probably due to the weaker velocity speeds felt on this margin. Concerning the overall juvenile density, there were significant differences among the stations distributed along the estuary, but they did no reflect a longitudinal dispersion attenuation pattern. Size-frequency distribution of the juvenile population showed that the average size is higher on the left margin. Recruits (carapace length between 1.0 mm and 3.4 mm) were more abundant on the upstream stations. Density of early juveniles (3.4 mm-6.5 mm) and juveniles (6.5 mm-10 mm) was more stable throughout the estuary axis than that of recruits. This distribution pattern may result from tidal excursion processes or mechanisms to avoid biotic interactions, such as predation and competition. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Aim: Amyotrophic lateral sclerosis (ALS) is a chronic, neurodegenerative disease, which leads to development of malnutrition. The main purpose of this research was to analyze the impact of malnutrition on the course of the disease and long-term survival. Material and methods: A retrospective analysis has been performed on 48 patients (22 F [45,83%] and 26 M [54,17%], the average age of patients: 66,2 [43-83]) in 2008-2014.The analysis of the initial state of nutrition was measured by body mass index (BMI), nutritional status according to NRS 2002, SGA and concentration of albumin in blood serum. Patients were divided into two groups, depending on the state of nutrition: well-nourished and malnourished. The groups were created separately for each of these, which allowed an additional comparative analysis of techniques used for the assessment of nutritional status. Results: Proper state of nutrition was interrelated with longer survival (SGA: 456 vs. 679 days, NRS: 312 vs. 659 vs. 835 days, BMI: respectively, 411, 541, 631 days, results were statistically significant for NRS and BMI). Concentration of albumin was not a prognostic factor, but longer survival was observed when level of albumin was increased during nutritional therapy. Conclusions: The initial nutrition state and positive response to enteral feeding is associated with better survival among patients with ALS. For this reason, nutritional therapy should be introduced as soon as possible.
Resumo:
2016
Resumo:
Previous earthquakes showed that shear wall damage could lead to catastrophic failures of the reinforced concrete building. The lateral load capacity of shear walls needs to be estimated to minimize associated losses during catastrophic events; hence it is necessary to develop and validate reliable and stable numerical methods able to converge to reasonable estimations with minimum computational effort. The beam-column 1-D line element with fiber-type cross-section model is a practical option that yields results in agreement with experimental data. However, shortcomings of using this model to predict the local damage response may come from the fact that the model requires fine calibration of material properties to overcome regularization and size effects. To reduce the mesh-dependency of the numerical model, a regularization method based on the concept of post-yield energy is applied in this work to both the concrete and the steel material constitutive laws to predict the nonlinear cyclic response and failure mechanism of concrete shear walls. Different categories of wall specimens known to produce a different response under in plane cyclic loading for their varied geometric and detailing characteristics are considered in this study, namely: 1) scaled wall specimens designed according to the European seismic design code and 2) unique full-scale wall specimens detailed according to the U.S. design code to develop a ductile behavior under cyclic loading. To test the boundaries of application of the proposed method, two full-scale walls with a mixed shear-flexure response and different values of applied axial load are also considered. The results of this study show that the use of regularized constitutive models considerably enhances the response predictions capabilities of the model with regards to global force-drift response and failure mode. The simulations presented in this thesis demonstrate the proposed model to be a valuable tool for researchers and engineers.
Resumo:
In this work, we reported the synthesis and characterization of two [2]rotaxanes endowed with a central ammonium group and two triazolium recognition stations on either side, acting as complexation sites for a dibenzo-24-crown-8 ether macrocycle. These mechanically interlocked architectures were obtained through the interlocking of a functionalized achiral macrocycle with Cs symmetry (where the symmetry element is a mirror plane corresponding to plane of the ring) and a C∞v symmetric axle (where a mirror plane and a C∞ principal axis are aligned along the axle length). We took advantage of the reversible acid/base triggered molecular shuttling of the ring between two lateral triazolium units to switch the rotaxanes between prochiral and mechanically planar chiral forms, which exists as two rapidly-interconverting co-conformers. We exploited the reactivity of the central amino group to attach an optically pure chiral substituent, with the goal of demonstrating the enantiomeric nature of the co-conformers and to obtain a non-zero diastereomeric excess in the resulting diastereomeric products through a dynamic kinetic resolution. To this end, two enantiopure reagents were chosen that could perform clean and fast reaction with amines: a sulfonyl chloride and an acyl chloride. Only the acyl chloride successfully produced an amide in high yield with the deprotonated rotaxane. The group added to the central amine station acted as a stopper against the shuttling of the macrocycle along the axis, thus preventing the fast interconversion of the two mechanically planar enantiomers. We analysed the results through static and dynamic NMR spectroscopic techniques by varying temperature and solvent used. Indeed, the presence of diastereomers was recorded alongside the configurational isomers resulting from the slow rotation of the CN-CO bond of the amide moiety, thus paving the way for a dynamic kinetic resolution.
Resumo:
The aim of this cephalometric study was to evaluate the influence of the sagittal skeletal pattern on the 'Y-axis of growth' measurement in patients with different malocclusions. Lateral head films from 59 patients (mean age 16y 7m, ranging from 11 to 25 years) were selected after a subjective analysis of 1630 cases. Sample was grouped as follows: Group 1 - class I facial pattern; group 2 - class II facial pattern; and Group 3 - class III facial pattern. Two angular measurements, SNGoGn and SNGn, were taken in order to determine skeletal vertical facial pattern. A logistic regression with errors distributed according to a binomial distribution was used to test the influence of the sagittal relationship (Class I, II, III facial patterns) on vertical diagnostic measurement congruence (SNGoGn and SNGn). RESULTS show that the probability of congruence between the patterns SNGn and SNGoGn was relatively high (70%) for group 1, but for groups II (46%) and III (37%) this congruence was relatively low. The use of SNGn appears to be inappropriate to determine the vertical facial skeletal pattern of patients, due to Gn point shifting throughout sagittal discrepancies. Clinical Significance: Facial pattern determined by SNGn must be considered carefully, especially when severe sagittal discrepancies are present.
Resumo:
The cranial base, composed of the midline and lateral basicranium, is a structurally important region of the skull associated with several key traits, which has been extensively studied in anthropology and primatology. In particular, most studies have focused on the association between midline cranial base flexion and relative brain size, or encephalization. However, variation in lateral basicranial morphology has been studied less thoroughly. Platyrrhines are a group of primates that experienced a major evolutionary radiation accompanied by extensive morphological diversification in Central and South America over a large temporal scale. Previous studies have also suggested that they underwent several evolutionarily independent processes of encephalization. Given these characteristics, platyrrhines present an excellent opportunity to study, on a large phylogenetic scale, the morphological correlates of primate diversification in brain size. In this study we explore the pattern of variation in basicranial morphology and its relationship with phylogenetic branching and with encephalization in platyrrhines. We quantify variation in the 3D shape of the midline and lateral basicranium and endocranial volumes in a large sample of platyrrhine species, employing high-resolution CT-scans and geometric morphometric techniques. We investigate the relationship between basicranial shape and encephalization using phylogenetic regression methods and calculate a measure of phylogenetic signal in the datasets. The results showed that phylogenetic structure is the most important dimension for understanding platyrrhine cranial base diversification; only Aotus species do not show concordance with our molecular phylogeny. Encephalization was only correlated with midline basicranial flexion, and species that exhibit convergence in their relative brain size do not display convergence in lateral basicranial shape. The evolution of basicranial variation in primates is probably more complex than previously believed, and understanding it will require further studies exploring the complex interactions between encephalization, brain shape, cranial base morphology, and ecological dimensions acting along the species divergence process.
Resumo:
This study sought to analyse the behaviour of the average spinal posture using a novel investigative procedure in a maximal incremental effort test performed on a treadmill. Spine motion was collected via stereo-photogrammetric analysis in thirteen amateur athletes. At each time percentage of the gait cycle, the reconstructed spine points were projected onto the sagittal and frontal planes of the trunk. On each plane, a polynomial was fitted to the data, and the two-dimensional geometric curvature along the longitudinal axis of the trunk was calculated to quantify the geometric shape of the spine. The average posture presented at the gait cycle defined the spine Neutral Curve. This method enabled the lateral deviations, lordosis, and kyphosis of the spine to be quantified noninvasively and in detail. The similarity between each two volunteers was a maximum of 19% on the sagittal plane and 13% on the frontal (p<0.01). The data collected in this study can be considered preliminary evidence that there are subject-specific characteristics in spinal curvatures during running. Changes induced by increases in speed were not sufficient for the Neutral Curve to lose its individual characteristics, instead behaving like a postural signature. The data showed the descriptive capability of a new method to analyse spinal postures during locomotion; however, additional studies, and with larger sample sizes, are necessary for extracting more general information from this novel methodology.
Resumo:
To develop Y-shaped plates with different thicknesses to be used in simulated fractures of the mandibular condyle. Ten plates were developed in Y shape, containing eight holes, and 30 synthetic polyurethane mandible replicas were developed for the study. The load test was performed on an Instron Model 4411 universal testing machine, applying load in the mediolateral and anterior-posterior positions on the head of the condyle. Two-way ANOVA with Tukey testing with a 5% significance level was used. It was observed that when the load was applied in the medial-lateral plate of greater thickness (1.5 mm), it gave the highest strength, while in the anteroposterior direction, the plate with the highest resistance was of the lesser thickness (0.6 mm). A plate with a thickness of 1.5 mm was the one with the highest average value for all displacements. In the anteroposterior direction, the highest values of resistance were seen in the displacement of 15 mm. After comparing the values of the biomechanical testing found in the scientific literature, it is suggested that the use of Y plates are suitable for use in subcondylar fractures within the limitations of the study.
Resumo:
This ex vivo study evaluated dentin permeability of the root canal in the apical third of different human groups of teeth. Eighty teeth were used, 8 from each dental group: maxillary and mandibular central incisors, lateral incisors and canines, maxillary first premolars (buccal and palatal roots), mandibular first premolars, and maxillary and mandibular second premolars, totalizing 88 roots that were distributed in 11 groups. The root canals were instrumented, irrigated with 1% NaOCl and 15% EDTA. Roots were immersed in 10% copper sulfate for 30 min and then in 1% rubeanic acid alcohol solution for the same period; this chemical reaction reveals dentin permeability by the formation of copper rubeanate, which is a dark-colored compound. Semi-serial 100-µm-thick cross-sections were obtained from the apical third of the roots. Five sections of each apical third were washed, dehydrated, cleared and mounted on glass slides for examination under optical microscopy. The percentage of copper ion infiltration and the amount of tubular dentin were quantified by morphometric analysis. The penetration of copper ions in the apical third ranged from 4.60 to 16.66%. The mandibular central and lateral incisors presented the highest dentin permeability (16.66%), while the maxillary canines and mandibular second and first premolars presented the lowest dentin permeability (4.60%, 4.80% and 5.71%, respectively; p<0.001). The other teeth presented intermediate permeability. In conclusion, dye penetration into dentin tubules at the apical region is strongly dependent on the group of teeth evaluated.
Resumo:
PURPOSE: To analyze the effects of detachment and repositioning of the medial pterygoid muscle on the growth of the maxilla and mandible of young rats through cephalometry. METHODS: Thirty one-month-old Wistar rats were used, distributed into three groups: experimental, sham-operated and control. In the experimental group, unilateral detachment and repositioning of the medial pterygoid muscle was performed. The sham-operated group only underwent surgical access, and the control group did not undergo any procedure. The animals were sacrificed at the age of three months. Their soft tissues were removed and the mandible was disarticulated. Radiographs of the skull in axial projection and the hemimandibles in lateral projection were obtained, and cephalometry was performed. The values obtained were subjected to statistical analyses among the groups and between the sides in each group. RESULTS: There were significant differences in the length of the mandible relative to the angular process in the experimental group and in the height of the mandibular body in the sham-operated group. CONCLUSION: The experimental detachment and repositioning of the medial pterygoid muscle during the growth period in rats affected the growth of the angle region, resulting in asymmetry of the mandible.