949 resultados para LOW-TEMPERATURE PHOTOINHIBITION
Resumo:
The low-temperature heat capacities of cyclohexane were measured in the temperature range from 78 to 350 K by means of an automatic adiabatic calorimeter equipped with a new sample container adapted to measure heat capacities of liquids. The sample container was described in detail. The performance of this calorimetric apparatus was evaluated by heat capacity measurements on water. The deviations of experimental heat capacities from the corresponding smoothed values lie within +/-0.3%, while the inaccuracy is within +/-0.4%, compared with the reference data in the whole experimental temperature range. Two kinds of phase transitions were found at 186.065 and 279.684 K corresponding solid-solid and solid-liquid phase transitions, respectively. The entropy and enthalpy of the phase transition, as well as the thermodynamic functions {H-(T)- H-298.15 K} and {S-(T)-S-298.15 K}, were derived from the heat capacity data. The mass fraction purity of cyclohexane sample used in the present calorimetric study was determined to be 99.9965% by fraction melting approach.
Resumo:
Molar heat capacities (C-p,C-m) of aspirin were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 78 to 383 K. No phase transition was observed in this temperature region. The polynomial function of Cp, vs. T was established in the light of the low-temperature heat capacity measurements and least square fitting method. The corresponding function is as follows: for 78 Kless than or equal toTless than or equal to383 K, C-p,C-m/J mol(-1) K-1=19.086X(4)+15.951X(3)-5.2548X(2)+90.192X+176.65, [X=(T-230.50/152.5)]. The thermodynamic functions on the base of the reference temperature of 298.15 K, {DeltaH(T)-DeltaH(298.15)} and {S-T-S-298.15}, were derived.
Resumo:
Carboxin was synthesized and its heat capacities were measured with an automated adiabatic calorimeter over the temperature range from 79 to 380K. The melting point, molar enthalpy (Delta(fus)H(m)) and entropy (Delta(fus)S(m)) of fusion of this compound were determined to be 365.29 +/- 0.06K, 28.193 +/- 0.09 kJ mol(-1) and 77.180 +/- 0.02 J mol(-1) K-1, respectively. The purity of the compound was determined to be 99.55 mol% by using the fractional melting technique. The thermodynamic functions relative to the reference temperature (298.15 K) were calculated based on the heat capacity measurements in the temperature range between 80 and 360 K. The thermal stability of the compound was further investigated by differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis. The DSC curve indicates that the sample starts to decompose at ca. 290degreesC with the peak temperature at 292.7degreesC. The TG-DTG results demonstrate the maximum mass loss rate occurs at 293degreesC corresponding to the maximum decomposition rate. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
Low-temperature heat capacities of the 9-fluorenemethanol (C14H12O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T = 78 K and T = 390 K. The solid-liquid phase transition of the compound has been observed to be T-fus = (376.567 +/- 0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be Delta(fus)H(m) = (26.273 +/- 0.013) kJ (.) mol(-1) and Delta(fus)S(m) = (69.770 +/- 0.035) J (.) K-1 (.) mol(-1). The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, Delta(c)U(C14H12O, s) = -(7125.56 +/- 4.62) kJ (.) mol(-1) and Delta(c)H(m)degrees(C14H12O, s) = -(7131.76 +/- 4.62) kJ (.) mol(-1), by means of a homemade precision oxygen-bomb combustion calorimeter at T = (298.15 +/- 0.001) K. The standard molar enthalpy of formation of the compound has been derived, Delta(f)H(m)degrees (C14H12O, s) = -(92.36 +/- 0.97) kJ (.) mol(-1), from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The low-temperature heat capacities of 2-chloro-5-trichloromethylpyridine were measured with a high-precision automated adiabatic calorimeter in the temperature range from 80 K to 345 K. A solid-liquid phase transition was observed from 318.57 K to 327.44 K with peak temperature 324.67 K; the molar enthalpy and entropy of phase transition, DeltaH(m) and DeltaS(m), were determined to be 14.50 +/-0.02 kJ mol(-1) and 44.66 +/- 0.07 kJ K-1 mol(-1), respectively. The thermal stability was investigated through thermogravimetric analysis (TG). The TG and DTG results reveal that 2-chloro-5-trichloromethylpyridine starts to lose mass at 332 K due to evaporation and completely changes into vapour at 483 K under the present experimental conditions.