335 resultados para LEPTOSPIRA INTERROGANS
Resumo:
Between 1999 and 2011, 4,178 suspected dengue cases in children less than 18 months of age were reported to the Centers for Disease Control and Prevention Dengue Branch in Puerto Rico. Of the 4,178, 813 were determined to be laboratory-positive and 737 laboratory-negative. Those remaining were either laboratory-indeterminate, not processed or positive for Leptospira . On average, 63 laboratory-positive cases were reported per year. Laboratory-positive cases had a median age of 8.5 months. Among these cases, the median age for those with dengue fever was 8.7 months and 7.9 months for dengue hemorrhagic fever. Clinical signs and symptoms indicative of dengue were greatest among laboratory-positive cases and included fever, rash, thrombocytopenia, bleeding manifestations, and petechiae. The most common symptoms among patients who were laboratory-negative were fever, nasal congestion, cough, diarrhea, and vomiting. Using the 1997 WHO guidelines, nearly 50% of the laboratory-positive cases met the case definition for dengue fever, and 61 of these were further determined to meet the case definition for dengue hemorrhagic fever. In comparison, 15% of laboratory-negative cases met the case definition for dengue fever and less than 1% for dengue hemorrhagic fever. None of the laboratory-positive or laboratory-negative cases met the criteria for dengue shock syndrome.^
Resumo:
Leptospirosis is an important but neglected zoonotic disease that is often overlooked in Africa. Although comprehensive data on the incidence of human disease are lacking, robust evidence of infection has been demonstrated in people and animals from all regions of the continent. However, to date, there are few examples of direct epidemiological linkages between human disease and animal infection. In East Africa, awareness of the importance of human leptospirosis as a cause of non-malarial febrile illness is growing. In northern Tanzania, acute leptospirosis has been diagnosed in 9% of patients with severe febrile illness compared to only 2% with malaria. However, little is known about the relative importance of different potential animal hosts as sources of human infection in this area. This project was established to investigate the roles of rodents and ruminant livestock, important hosts of Leptospira in other settings, in the epidemiology of leptospirosis in northern Tanzania. A cross-sectional survey of rodents living in and around human settlements was performed alongside an abattoir survey of ruminant livestock. Unusual patterns of animal infection were detected by real-time PCR detection. Renal Leptospira infection was absent from rodents but was detected in cattle from several geographic areas. Infection was demonstrated for the first time in small ruminants sub-Saharan Africa. Two major Leptospira species and a novel Leptospira genotype were detected in livestock. L. borgpetersenii was seen only in cattle but L. kirschneri infection was detected in multiple livestock species (cattle, sheep and goats), suggesting that at least two distinct patterns of Leptospira infection occur in livestock in northern Tanzania. Analysis of samples from acute leptospirosis in febrile human patients could not detect Leptospira DNA by real-time PCR but identified social and behavioural factors that may limit the utility of acute-phase diagnostic tests in this community. Analysis of serological data revealed considerable overlap between serogroups detected in cattle and human leptospirosis cases. Human disease was most commonly attributed to the serogroups Mini and Australis, which were also predominant reactive serogroups in cattle. Collectively, the results of this study led to the hypothesis that livestock are an important reservoir of Leptospira infection for people in northern Tanzania. These results also challenge our understanding of the relationship between Leptospira and common invasive rodent species, which do not appear to maintain infection in this setting. Livestock Leptospira infection has substantial potential to affect the well-being of people in East Africa, through direct transmission of infection or through indirect effects on food production and economic security. Further research is needed to quantify the impact of livestock leptospirosis in Africa and to develop effective interventions for the control of human and animal disease.
Resumo:
Leptospirosis has a wide spectrum of clinical manifestations. Acute renal failure, an important complication, generally involves interstitial and tubular damage. We describe the case of a 42-year-old man who was admitted with fever, back pain and periorbital oedema. He had hypertension, thrombocytopenia, acute renal failure, hypoalbuminaemia, hypertriglyceridaemia and proteinuria >4.00 g/l. The renal biopsy showed mesangioproliferative glomerulonephritis. Due to the epidemiological context and clinical picture, ceftriaxone was started with rapid clinical improvement. Blood PCR for leptospira came back positive. The presentation of leptospirosis as nephrotic syndrome is rare and this diagnosis should be considered before performing a renal biopsy.
Resumo:
Background: Leptospirosis, a disease caused by Leptospira species, a spirochaete bacterium that can develop in an appropriate environment and/or grow in human and/or animal hosts, is a serious problem for the Ministry of Public Health, Thailand. Objective: To investigate people’s perceptions and behavioral risks regarding leptospirosis infection. Methods: The cross-sectional descriptive study collected data in May, 2013. Data on individuals’ perceptions and risky behaviors concerning leptospirosis were collected from 104 completed questionnaires. Results: Regarding perceptions of leptospirosis, we found them to be at a high level (97.1%) and risky behaviors regarding leptospirosis were reported at a moderate level (74.0%). The study found no correlation between perceptions and risky behaviors regarding leptospirosis (r 0.186, p-value 0.059). Conclusion: This study suggest that people in these areas have good knowledge about leptospirosis. However, some people have risky behavior associated with leptospirosis. Thus, a behavioral change campaign should be promoted to encourage people awareness of the dangers of such behavior.
Resumo:
Endemic zoonotic diseases remain a serious but poorly recognised problem in affected communities in developing countries. Despite the overall burden of zoonoses on human and animal health, information about their impacts in endemic settings is lacking and most of these diseases are continuously being neglected. The non-specific clinical presentation of these diseases has been identified as a major challenge in their identification (even with good laboratory diagnosis), and control. The signs and symptoms in animals and humans respectively, are easily confused with other non-zoonotic diseases, leading to widespread misdiagnosis in areas where diagnostic capacity is limited. The communities that are mostly affected by these diseases live in close proximity with their animals which they depend on for livelihood, which further complicates the understanding of the epidemiology of zoonoses. This thesis reviewed the pattern of reporting of zoonotic pathogens that cause febrile illness in malaria endemic countries, and evaluates the recognition of animal associations among other risk factors in the transmission and management of zoonoses. The findings of the review chapter were further investigated through a laboratory study of risk factors for bovine leptospirosis, and exposure patterns of livestock coxiellosis in the subsequent chapters. A review was undertaken on 840 articles that were part of a bigger review of zoonotic pathogens that cause human fever. The review process involves three main steps: filtering and reference classification, identification of abstracts that describe risk factors, and data extraction and summary analysis of data. Abstracts of the 840 references were transferred into a Microsoft excel spread sheet, where several subsets of abstracts were generated using excel filters and text searches to classify the content of each abstract. Data was then extracted and summarised to describe geographical patterns of the pathogens reported, and determine the frequency animal related risk factors were considered among studies that investigated risk factors for zoonotic pathogen transmission. Subsequently, a seroprevalence study of bovine leptospirosis in northern Tanzania was undertaken in the second chapter of this thesis. The study involved screening of serum samples, which were obtained from an abattoir survey and cross-sectional study (Bacterial Zoonoses Project), for antibodies against Leptospira serovar Hardjo. The data were analysed using generalised linear mixed models (GLMMs), to identify risk factors for cattle infection. The final chapter was the analysis of Q fever data, which were also obtained from the Bacterial Zoonoses Project, to determine exposure patterns across livestock species using generalized linear mixed models (GLMMs). Leptospira spp. (10.8%, 90/840) and Rickettsia spp. (10.7%, 86/840) were identified as the most frequently reported zoonotic pathogens that cause febrile illness, while Rabies virus (0.4%, 3/840) and Francisella spp. (0.1%, 1/840) were least reported, across malaria endemic countries. The majority of the pathogens were reported in Asia, and the frequency of reporting seems to be higher in areas where outbreaks are mostly reported. It was also observed that animal related risk factors are not often considered among other risk factors for zoonotic pathogens that cause human fever in malaria endemic countries. The seroprevalence study indicated that Leptospira serovar Hardjo is widespread in cattle population in northern Tanzania, and animal husbandry systems and age are the two most important risk factors that influence seroprevalence. Cattle in the pastoral systems and adult cattle were significantly more likely to be seropositive compared to non-pastoral and young animals respectively, while there was no significant effect of cattle breed or sex. Exposure patterns of Coxiella burnetii appear different for each livestock species. While most risk factors were identified for goats (such as animal husbandry systems, age and sex) and sheep (animal husbandry systems and sex), there were none for cattle. In addition, there was no evidence of a significant influence of mixed livestock-keeping on animal coxiellosis. Zoonotic agents that cause human fever are common in developing countries. The role of animals in the transmission of zoonotic pathogens that cause febrile illness is not fully recognised and appreciated. Since Leptospira spp. and C. burnetii are among the most frequently reported pathogens that cause human fever across malaria endemic countries, and are also prevalent in livestock population, control and preventive measures that recognise animals as source of infection would be very important especially in livestock-keeping communities where people live in close proximity with their animals.