967 resultados para LDL-Receptor Related Proteins
Resumo:
A 69-kDa proteinase (P69), a member of the pathogenesis-related proteins, is induced and accumulates in tomato (Lycopersicon esculentum) plants as a consequence of pathogen attack. We have used the polymerase chain reaction to identify and clone a cDNA from tomato plants that represent the pathogenesis-related P69 proteinase. The nucleotide sequence analysis revealed that P69 is synthesized in a preproenzyme form, a 745-amino acid polypeptide with a 22-amino acid signal peptide, a 92-amino acid propolypeptide, and a 631-amino acid mature polypeptide. Within the mature region the most salient feature was the presence of domains homologous to the subtilisin serine protease family. The amino acid sequences surrounding Asp-146, His-203, and Ser-532 of P69 are closely related to the catalytic sites (catalytic triad) of the subtilisin-like proteases. Northern blot analysis revealed that the 2.4-kb P69 mRNA accumulates abundantly in leaves and stem tissues from viroid-infected plants, whereas the mRNA levels in tissues from healthy plants were undetectable. Our results indicate that P69, a secreted calcium-activated endopeptidase, is a plant pathogenesis-related subtilisin-like proteinase that may collaborate with other defensive proteins in a general mechanism of active defense against attacking pathogens.
Resumo:
Apolipoprotein (apo)-B is found in two forms in mammals: apo-B100, which is made in the liver and the yolk sac, and apo-B48, a truncated protein made in the intestine. To provide models for understanding the physiologic purpose for the two forms of apo-B, we used targeted mutagenesis of the apo-B gene to generate mice that synthesize exclusively apo-B48 (apo-B48-only mice) and mice that synthesize exclusively apo-B100 (apo-B100-only mice). Both the apo-B48-only mice and apo-B100-only mice developed normally, were healthy, and were fertile. Thus, apo-B48 synthesis was sufficient for normal embryonic development, and the synthesis of apo-B100 in the intestines of adult mice caused no readily apparent adverse effects on intestinal function or nutrition. Compared with wild-type mice fed a chow diet, the levels of low density lipoprotein (LDL)-cholesterol and very low density lipoprotein- and LDL-triacylglycerols were lower in apo-B48-only mice and higher in the apo-B100-only mice. In the setting of apo-E-deficiency, the apo-B100-only mutation lowered cholesterol levels, consistent with the fact that apo-B100-lipoproteins can be cleared from the plasma via the LDL receptor, whereas apo-B48-lipoproteins lacking apo-E cannot. The apo-B48-only and apo-B100-only mice should prove to be valuable models for experiments designed to understand the purpose for the two forms of apo-B in mammalian metabolism.
Resumo:
Proper chromosome segregation in eukaryotes depends upon the mitotic and meiotic spindles, which assemble at the time of cell division and then disassemble upon its completion. These spindles are composed in large part of microtubules, which either generate force by controlled polymerization and depolymerization or transduce force generated by molecular microtubule motors. In this review, we discuss recent insights into chromosome segregation mechanisms gained from the analyses of force generation during meiosis and mitosis. These analyses have demonstrated that members of the kinesin superfamily and the dynein family are essential in all organisms for proper chromosome and spindle behavior. It is also apparent that forces generated by microtubule polymerization and depolymerization are capable of generating forces sufficient for chromosome movement in vitro; whether they do so in vivo is as yet unclear. An important realization that has emerged is that some spindle activities can be accomplished by more than one motor so that functional redundancy is evident. In addition, some meiotic or mitotic movements apparently occur through the cooperative action of independent semiredundant processes. Finally, the molecular characterization of kinesin-related proteins has revealed that variations both in primary sequence and in associations with other proteins can produce motor complexes that may use a variety of mechanisms to transduce force in association with microtubules. Much remains to be learned about the regulation of these activities and the coordination of opposing and cooperative events involved in chromosome segregation; this set of problems represents one of the most important future frontiers of research.
Resumo:
Adenosine kinase catalyzes the phosphorylation of adenosine to AMP and hence is a potentially important regulator of extracellular adenosine concentrations. Despite extensive characterization of the kinetic properties of the enzyme, its primary structure has never been elucidated. Full-length cDNA clones encoding catalytically active adenosine kinase were obtained from lymphocyte, placental, and liver cDNA libraries. Corresponding mRNA species of 1.3 and 1.8 kb were noted on Northern blots of all tissues examined and were attributable to alternative polyadenylylation sites at the 3' end of the gene. The encoding protein consists of 345 amino acids with a calculated molecular size of 38.7 kDa and does not contain any sequence similarities to other well-characterized mammalian nucleoside kinases, setting it apart from this family of structurally and functionally related proteins. In contrast, two regions were identified with significant sequence identity to microbial ribokinase and fructokinases and a bacterial inosine/guanosine kinase. Thus, adenosine kinase is a structurally distinct mammalian nucleoside kinase that appears to be akin to sugar kinases of microbial origin.
Resumo:
Multiubiquitin chain attachment is a key step leading to the selective degradation of abnormal polypeptides and many important regulatory proteins by the eukaryotic 26S proteasome. However, the mechanism by which the 26S complex recognizes this posttranslational modification is unknown. Using synthetic multiubiquitin chains to probe an expression library for interacting proteins, we have isolated an Arabidopsis cDNA, designated MBP1, that encodes a 41-kDa acidic protein exhibiting high affinity for chains, especially those containing four or more ubiquitins. Based on similar physical and immunological properties, multiubiquitin binding affinities, and peptide sequence, MBP1 is homologous to subunit 5a of the human 26S proteasome. Structurally related proteins also exist in yeast, Caenorhabditis, and other plant species. Given their binding properties, association with the 26S proteasome, and widespread distribution, MBP1, S5a, and related proteins likely function as essential ubiquitin recognition components of the 26S proteasome.
Resumo:
A variety of results point to the transcription factor E2F as a critical determinant of the G1/S-phase transition during the cell cycle in mammalian cells, serving to activate the transcription of a group of genes that encode proteins necessary for DNA replication. In addition, E2F activity appears to be directly regulated by the action of retinoblastoma protein (RB) and RB-related proteins and indirectly regulated through the action of G1 cyclins and associated kinases. We now show that the accumulation of G1 cyclins is regulated by E2F1. E2F binding sites are found in both the cyclin E and cyclin D1 promoters, both promoters are activated by E2F gene products, and at least for cyclin E, the E2F sites contribute to cell cycle-dependent control. Most important, the endogenous cyclin E gene is activated following expression of the E2F1 product encoded by a recombinant adenovirus vector. These results suggest the involvement of E2F1 and cyclin E in an autoregulatory loop that governs the accumulation of critical activities affecting the progression of cells through G1.
Resumo:
The mCAT-2 gene encodes a Na(+)-independent cationic amino acid (AA) transporter that is inducibly expressed in a tissue-specific manner in various physiological conditions. When mCAT-2 protein is expressed in Xenopus oocytes, the elicited AA transport properties are similar to the biochemically defined transport system y+. The mCAT-2 protein sequence is closely related to another cationic AA transporter (mCAT-1); these related proteins elicit virtually identical cationic AA transport in Xenopus oocytes. The two genes differ in their tissue expression and induction patterns. Here we report the presence of diverse 5' untranslated region (UTR) sequences in mCAT-2 transcripts. Sequence analysis of 22 independent mCAT-2 cDNA clones reveals that the cDNA sequences converge precisely 16 bp 5' of the initiator AUG codon. Moreover, analysis of genomic clones shows that the mCAT-2 gene 5'UTR exons are dispersed over 18 kb. Classical promoter and enhancer elements are present in appropriate positions 5' of the exons and their utilization results in regulated mCAT-2 mRNA accumulation in skeletal muscle and liver following partial hepatectomy. The isoform adjacent to the most distal promoter is found in all tissues and cell types previously shown to express mCAT-2, while the other 5' UTR isoforms are more tissue specific in their expression. Utilization of some or all of five putative promoters was documented in lymphoma cell clones, liver, and skeletal muscle. TATA-containing and (G+C)-rich TATA-less promoters appear to control mCAT-2 gene expression. The data indicate that the several distinct 5' mCAT-2 mRNA isoforms result from transcriptional initiation at distinct promoters and permit flexible transcriptional regulation of this cationic AA transporter gene.
Resumo:
The dorsoventral axis is established early in Xenopus development and may involve signaling by Wnts, a family of Wnt1-protooncogene-related proteins. The protein kinase shaggy functions in the wingless/Wnt signaling pathway, which operates during Drosophila development. To assess the role of a closely related kinase, glycogen synthase kinase 3 beta (GSK-3 beta), in vertebrate embryogenesis, we cloned a cDNA encoding a Xenopus homolog of GSK-3 beta (XGSK-3 beta). XGSK-3 beta-specific transcripts were detected by Northern analysis in Xenopus eggs and early embryos. Microinjection of the mRNA encoding a catalytically inactive form of rat GSK-3 beta into a ventrovegetal blastomere of eight-cell embryos caused ectopic formation of a secondary body axis containing a complete set of dorsal and anterior structures. Furthermore, in isolated ectodermal explants, the mutant GSK-3 beta mRNA activated the expression of neural tissue markers. Wild-type XGSK-3 beta mRNA suppressed the dorsalizing effects of both the mutated GSK-3 beta and Xenopus dishevelled, a proposed upstream signaling component of the same pathway. These results strongly suggest that XGSK-3 beta functions to inhibit dorsoventral axis formation in the embryo and provide evidence for conservation of the Wnt signaling pathway in Drosophila and vertebrates.
Resumo:
A family of Bcl-2-related proteins regulates cell death and shares highly conserved BH1 and BH2 domains. BH1 and BH2 domains of Bcl-2 were required for it to heterodimerize with Bax and to repress apoptosis. A yeast two-hybrid assay accurately reproduced this interaction and defined a selectivity and hierarchy of further dimerizations. Bax also heterodimerizes with Bcl-xL, Mcl-1, and A1. A Gly-159-->Ala substitution in BH1 of Bcl-xL disrupted its heterodimerization with Bax and abrogated its inhibition of apoptosis in mammalian cells. This suggests that the susceptibility to apoptosis is determined by multiple competing dimerizations in which Bax may be a common partner.
Resumo:
Nuclear-encoded proteins targeted to the chloroplast are typically synthesized with N-terminal transit peptides which are proteolytically removed upon import. Structurally related proteins of 145 and 143 kDa copurify with a soluble chloroplast processing enzyme (CPE) that cleaves the precursor for the major light-harvesting chlorophyll a/b binding protein and have been implicated in the maturation of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and acyl carrier protein. The 145- and 143-kDa proteins have not been found as a heterodimer and thus may represent functionally independent isoforms encoded by separate genes. Here we describe the primary structure of a 140-kDa polypeptide encoded by cDNAs isolated by using antibodies raised against the 145/143-kDa doublet. The 140-kDa polypeptide contains a transit peptide, and strikingly, a His-Xaa-Xaa-Glu-His zinc-binding motif that is conserved in a recently recognized family of metalloendopeptidases, which includes Escherichia coli protease III, insulin-degrading enzyme, and subunit beta of the mitochondrial processing peptidase. Identity of 25-30%, concentrated near the N terminus of the 140-kDa polypeptide, is found with these proteases. Expression of CPE in leaves is not light dependent. Indeed, transcripts are present in dark-grown plants, and the 145/143-kDa doublet and proteolytic activity are both found in etioplasts, as well as in root plastids. Thus, CPE appears to be a necessary component of the import machinery in photosynthetic and nonphotosynthetic tissues, and it may function as a general stromal processing peptidase in plastids.
Resumo:
NGFI-A (also called Egr1, Zif268, or Krox24) and the closely related proteins Krox20, NGFI-C, and Egr3 are zinc-finger transcription factors encoded by immediate-early genes which are induced by a wide variety of extracellular stimuli. NGFI-A has been implicated in cell proliferation, macrophage differentiation, synaptic activation, and long-term potentiation, whereas Krox20 is critical for proper hindbrain segmentation and peripheral nerve myelination. In previous work, a structure/function analysis of NGFI-A revealed a 34-aa inhibitory domain that was hypothesized to be the target of a cellular factor that represses NGFI-A transcriptional activity. Using the yeast two-hybrid system, we have isolated a cDNA clone which encodes a protein that interacts with this inhibitory domain and inhibits the ability of NGFI-A to activate transcription. This NGFI-A-binding protein, NAB1, is a 570-aa nuclear protein that bears no obvious sequence homology to known proteins. NAB1 also represses Krox20 activity, but it does not influence Egr3 or NGFI-G, thus providing a mechanism for the differential regulation of this family of immediate-early transcription factors.
Resumo:
Brefeldin A, a fungal metabolite that inhibits membrane transport, induces the mono(ADP-ribosyl)ation of two cytosolic proteins of 38 and 50 kDa as judged by SDS/PAGE. The 38-kDa substrate has been previously identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We report that the 50-kDa BFA-induced ADP-ribosylated substrate (BARS-50) has native forms of 170 and 130 kDa, as determined by gel filtration of rat brain cytosol, indicating that BARS-50 might exist as a multimeric complex. BARS-50 can bind GTP, as indicated by blot-overlay studies with [alpha-32P]GTP and by photoaffinity labeling with guanosine 5'-[gamma-32P] [beta,gamma-(4-azidoanilido)]triphosphate. Moreover, ADP-ribosylation of BARS-50 was completely inhibited by the beta gamma subunit complex of G proteins, while the ADP-ribosylation of GAPDH was unmodified, indicating that this effect was due to an interaction of the beta gamma complex with BARS-50, rather than with the ADP-ribosylating enzyme. Two-dimensional gel electrophoresis and immunoblot analysis shows that BARS-50 is a group of closely related proteins that appear to be different from all the known GTP-binding proteins.
Resumo:
The retinoblastoma susceptibility gene (Rb) participates in controlling the G1/S-phase transition, presumably by binding and inactivating E2F transcription activator family members. Mouse embryonic fibroblasts (MEFs) with no, one, or two inactivated Rb genes were used to determine the specific contributions of Rb protein to cell cycle progression and gene expression. MEFs lacking both Rb alleles (Rb-/-) entered S phase in the presence of the dihydrofolate reductase inhibitor methotrexate. Two E2F target genes, dihydrofolate reductase and thymidylate synthase, displayed elevated mRNA and protein levels in Rb- MEFs. Since absence of functional Rb protein in MEFs is sufficient for S-phase entry under growth-limiting conditions, these data indicate that the E2F complexes containing Rb protein, and not the Rb-related proteins p107 and p130, may be rate limiting for the G1/S transition. Antineoplastic drugs caused accumulation of p53 in the nuclei of both Rb+/+ and Rb-/- MEFs. While p53 induction led to apoptosis in Rb-/- MEFs, Rb+/- and Rb+/+ MEFs underwent cell cycle arrest without apoptosis. These results reveal that diverse growth signals work through Rb to regulate entry into S phase, and they indicate that absence of Rb protein produces a constitutive DNA replication signal capable of activating a p53-associated apoptotic response.
Resumo:
As glândulas salivares são estruturas essenciais para a manutenção da homeostase da cavidade oral pela síntese e secreção do fluido salivar. A disfunção ou perda permanente das glândulas salivares causadas por radioterapia, doenças inflamatórias ou desordens congênitas elevam principalmente o risco de infecções da mucosa oral e de estruturas dentárias, além de potencialmente prejudicar funções fisiológicas como fala, mastigação e paladar, diretamente interferindo na qualidade de vida dos indivíduos afetados. Os tratamentos atualmente disponíveis são apenas paliativos, ressaltando a necessidade de se compreender melhor os processos embriogênicos a fim de desenvolver novas estratégias terapêuticas capazes de regenerar as glândulas salivares. O princípio da formação das glândulas salivares baseia-se na coordenação de diversos processos morfogenéticos, e este trabalho foca particularmente em investigar a formação do espaço luminal do sistema de ductos, uma vez que a adequada abertura dos lumens é um processo essencial para a secreção salivar. Relata-se que a remoção das células centrais dos cordões sólidos epiteliais por morte celular apoptótica é o principal mecanismo de abertura do espaço luminal dos futuros ductos glandulares em camundongos. Porém, pouco se sabe sobre o controle temporal da apoptose durante o desenvolvimento glandular e sobre seu comportamento em glândulas salivares humanas. Neste trabalho, o perfil de expressão de diversas proteínas envolvidas na cascata apoptótica em glândulas salivares fetais humanas foi analisado de acordo com cada estágio morfogenético por imunoistoquímica (Bax, Bak, Bad, Bid, Bcl-2, Bcl-x, Bcl-xL, caspase-3 clivada, caspases-6, -7 e -9, apaf-1, survivina e citocromo c). As análises semi-qualitativas resultaram em negatividade apenas para as proteínas Bcl-2, Bad, Bid e caspase-3 clivada em todas as fases de desenvolvimento. A expressão nuclear de Bax e Bak foi identificada em presumidos espaços luminais em estágios precoces, enquanto Bcl-xL foi o fator antiapoptótico da família Bcl-2 que exibiu expressão nuclear mais importante. Caspases-6, -7 e -9 foram positivas em todas as fases, e a ausência de caspase-3 clivada sugere caspase-7 como principal caspase efetora da apoptose em desenvolvimento de glândulas salivares humanas. Ambos os componentes do complexo apoptossomo foram positivos durante o desenvolvimento glandular, e o inibidor survivina demonstrou mais positividade nuclear em estágios mais avançados. Ao observar a expressão de reguladores apoptóticos durante o desenvolvimento glandular humano, foram realizados experimentos funcionais com culturas de tecido glandular de camundongos para avaliar o papel das caspases durante a formação desta estrutura. Inicialmente detectou-se a atividade apoptótica em glândulas salivares de camundongos albinos no centro dos cordões epiteliais primários a partir de estágios precoces de desenvolvimento através de TUNEL e caspase-3 clivada. A partir disso, foi realizada a inibição apoptótica funcional in vitro durante o mesmo período, que resultou em ductos significativamente mais amplos e em defeitos morfológicos importantes nas estruturas luminal e acinar. Este trabalho evidenciou portanto atividade apoptótica durante a formação de glândulas salivares humanas e de camundongo, expressando-se em fases mais precoces do que reportadas anteriormente. Além disso, a ausência de Bad e Bid indica que a via intrínseca está mais ativa que a extrínseca, e distintos perfis de expressão da maioria das moléculas sugere adicionais funções não-apoptóticas durante a morfogênese glandular.
Resumo:
Os mecanismos moleculares envolvidos na resistência de plantas contra patógenos são um tema bastante discutido no meio acadêmico, sendo o objetivo maior dos estudos a diminuição das perdas de produtividade provocadas por doenças em plantações do mundo todo. Muitos modelos de interação patógeno-hospedeiro foram propostos e desenvolvidos priorizando plantas e culturas de rápido desenvolvimento com ciclo de vida curto. Espécies de ciclo longo, porém, devem lidar durante anos - ao menos até a idade reprodutiva - contra o ataque de bactérias, fungos e vírus, sem contar, nesse meio tempo, com recombinações genéticas e mutações que tornariam possível o escape contra as moléstias causadas por microrganismos. Assim, como alternativa aos modelos usuais, o presente trabalho estudou um diferente par de antagonistas: Eucalyptus grandis e Puccinia psidii. Apesar da contribuição de programas de melhoramento genético, o patossistema E. grandis X P. psidii ainda é pouco descrito no nível molecular, havendo poucos estudos sobre os processos e as moléculas que agem de forma a conferir resistência às plantas. Assim, buscando o melhor entendimento da relação entre E. grandis X P. psidii, o presente trabalho estudou a mudança dos perfis de proteínas e metabólitos secundários ocorrida nos tecidos foliares de plantas resistentes e susceptíveis durante a infecção pelo patógeno, com o auxílio da técnica de cromatografia líquida acoplada à espectrometria de massas. Os resultados obtidos indicam que as plantas resistentes percebem a presença do patógeno logo nas primeiras horas pós-infecção, produzindo proteínas ligadas à imunidade (HSP90, ILITYHIA, LRR Kinase, NB-ARC disease resistance protein). Essa percepção desencadeia a produção de proteínas de parede celular e de resposta oxidativa, além de modificar o metabolismo primário e secundário. As plantas susceptíveis, por outro lado, têm o metabolismo subvertido, produzindo proteínas responsáveis pelo afrouxamento da parede celular, beneficiando a absorção de nutrientes, crescimento e propagação de P. psidii. No trabalho também são propostos metabólitos biomarcadores de resistência, moléculas biomarcadoras de resposta imune e sinais da infecção por patógeno em E. grandis.