984 resultados para LATHRAP, DONALD W.
Resumo:
A series of W-type ferrites with the composition of Ba1-xLaxCo2Fe16O27 (where, x = 0.0, 0.05, 0.10, 0.15, 020 and 0.25) were prepared by solid-state reaction method. The structure transformations of the ferrites were examined by XRD, DTA-TG and XPS, and the microwave-absorbing properties were investigated by evaluating the permeability and permittivity of materials (mu(r), epsilon(r)). The results showed that the phase-transition temperature increased with the addition of La2+ content, and a single-phase was formed at 1250 degrees C at last. Microwave properties were obviously improved as a result of the substitution of La3+ for Ba2+ at the frequency range of 0.5 similar to 18.0 GHz.
Resumo:
Single phase WxAl(50)Mo(50)-X (X=40, 30, 20 and 10) powders have been synthesized directly by mechanical alloying (MA). The structural evolutions during MA and subsequent as-milled powders by annealing at 1400 degrees C have been analyzed using X-ray diffraction (XRD). Different from the Mo50Al50 alloy, W40Al50Mo10 and W30Al50Mo20 alloys were stable at 1400 degrees C under vacuum. The results of high-pressure sintering indicated that the microhardnesses of two compositions, namely W40Al50Mo10 and W30Al50Mo20 alloys have higher values compared with W50Al50 alloy.
Resumo:
The solid-solution-particle reinforced W(Al)-Ni composites were successfully fabricated by using mechanical alloying (MA) and hot-pressing (HP) technique when the content of Ni is between 45 wt% and 55 wt%. Besides, samples of various original component ratio of Al50W50 to Ni have been fabricated, and the corresponding microcomponents and mechanical properties such as microhardness, ultimate tensile strength and elongation were characterized and discussed. The optimum ultimate tensile strength under the experiment conditions is 1868 MPa with elongation of 10.21 % and hardness of 6.62 GPa. X-ray diffraction (XRD), FE-SEM and energy dispersive analysis of X-rays (EDS) were given to analysis the components and morphology of the composite bulk specimens.
Resumo:
Pure metal powder mixtures of W and Mg at the desired composition were milled in conventional high-energy ball mill, and amorphous alloy W50Mg50 was obtained after milling for 20 h. The structure evolution of elemental powder mixtures was studied following milling and subsequent high pressure and high temperature treatment. The amorphous alloy transform into a nanocrystalline material below 1050 degreesC at 4.0 GPa. On increasing the temperature, it transforms into a mixture of several new crystal phases under high-pressure condition. It also found that both mechanical alloying and high pressure treatment are the two necessary processes to form the nanocrystalline and the new phases.
Resumo:
W1-xAlx (x=0-0.86) alloys were synthesized by mechanically alloying the pure metal powder mixtures at designated compositions by conventional high-energy ball milling. The W-Al alloys were stable under high pressure and high temperature. The alloys were lighter than W. The hardness and oxidation resistance of the alloys was greatly improved compared to both W and Al. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The photo-induced decarbonylation of Cp'Cr(NO)(CO)(2) (1a) in MeCN solution in the presence of R2E2 (E = S, Se; R = Me, Ph) leads to the formation of chalcogenolato-bridged binuclear complexes Cp-2'Cr-2(NO)(2)(mu -ER)(2) [E = S; R = Me (2a), Ph (3a); E = Se, R = Me (4a), Ph (5a)] while reactions between Cp'M(NO)(CO)(2) [M = Mo (1b), W (1c)] and Ph2E2 (E = S, Se) result in mononuclear complexes Cp'M(NO)(EPh)(2) [M = Mo; E = S (9b), Se (10b); M = W, E = S (11c), Se (12c)]. The corresponding reactions of (1b) with Me2E2 (E = S, Se) yielded both mono and binuclear complexes: Cp'Mo(NO)(SeMe)(2) (8b), Cp-2'Mo-2(NO)(2)(mu -EMe)(2) [E = S (6b), Se (7b)]. The new complexes have been characterized by i.r., H-1-, C-13-n.m.r. spectra and by electron-impact mass spectrometry.
Resumo:
The reactions of half-sandwich diselenolate Mo and W complexes (CpM)-M-#(NO)(SePh)(2) (M = Mo; Cp-# = Cp' (1a), MeCp (1b); M = W; Cp-# = Cp' (1c)) with (Norb)Mo(CO)(4), Ni(COD)(2) and Fe(CO)(5) have been investigated. Treatment of (1a), (1b) and (1c) with (Norb)Mo(CO)(4) in PhMe gave the bimetallic complexes: Cp'Mo(NO)(mu -SePh)(2)Mo(CO)(4) (2a), MeCpMo(NO)(mu -SePh)(2)Mo(CO)(4) (2b) and Cp'W(NO)(mu -SePh)(2)Mo(CO)(4) (2c) in moderate yields. Irradiation of (1a) and (1c) in the presence of Fe(CO)(5) gave heterobimetallic complexes Cp'Mo(CO)(mu -SePh)(2)Fe(CO)(3) (3a) and Cp'W(NO)(mu -SePh)(2)Fe(CO)(3) (3c). Ni(COD)(2) reacts with two equivalents of (1a), (1b) and (1c) to give [Cp'Mo(NO)(mu -SePh)(2)](2)Ni (4a), [MeCpMo(NO)(mu -SePh)(2)](2)Ni (4b) and [Cp'W(NO)(mu -SePh)(2)](2)Ni (4c) in good yields. The new heterobimetallic complexes were characterized by i.r., H-1-n.m.r., C-13-n.m.r. and EI-MS spectroscopy.
Resumo:
Using a graft modification method, a comblike polymer host (CBPE550) was synthesized by reacting monomethyl ether of poly(ethylene glycol) (PEGMA) with ethylene-maleic anhydride copolymer (EMAC) and endcapping the residual carboxylic acid with methanol. The product was characterized by IR and elementary analysis. Result showed that the product was amorphous and semi-ester product is accord with reaction equation. There were two peaks in the plot of the ionic conductivity against Li salt concentration. The plot of log a against 1/(T - T-0) shows a dual VTF behavior when using the glass transition temperature of PEO of side chain as T beta. The comblike polymer is a white rubbery solid. It can be well-dissolved in acetone. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Plant calmodulin (CaM) has been extracted from cauliflower, and the purified CaM has been identified with the activation of NAD kinase (NADK) and the inhibition effect of CaM antagonist W-7. CaM's intrinsic fluorescence and Tb3+ fluorescence showed that there was one tyrosine residue and four metal-binding sites in cauliflower CaM. Based on Forster-type nonradiative energy theory, the distances of Tyr --> site III, IV have been determined, and these are 1.23 nm (Tyr --> site III ) and 1.18 nm(Tyr --> site IV). The Eu3+ and Tb3+ fluorescence probes showed that the combination of CaM with W-7 resulted in significant change on CaM's conformation, but did not affect coordination environment of metal-binding sites.
Resumo:
Reaction of [Ph(4)P]2WS4 With NiCl2 in methanol solution in the presence of NaOCH3 leads to the formation of [Ph(4)P](2) [S2W(mu-S)(2)Ni(S-2)] (I) A Similar reaction between (NH4)(2)WS4 and NiCl2 under O-2 atmosphere in the presence of Ph(4)PCl or (n)Bu(4)NCl affords [Ph(4)P](2)([(S-2)W(O)(mu-S)(2)]Ni-2] (IIa) and [(n)Bu(4)N](2)([(S-2)W(O)(mu-S)(2)]Ni-2} (IIb) Under argon the same reaction gives [Ph(4)P](2)[Ni(WS4)(2)] (IIIa) and [(n)Bu(4)N](2)[Ni(WS4)(2)] (IIIb). [Ph(4)P](2)[Ni(WOS3)(2)] (IV) and [Ph(4)P](2)[Ni(WO2S2)(2)] (V) can be prepared from the reaction of [Ph(4)P]2WOS3 and [Ph(4)P]2WO2S2 with NiCl2. Treatment of (NH4)(2)WS4 with CuCl in the presence of PPh(3) in boiling pyridine produces W(mu-S)(4)Cu-2(PPh(3))(3) (VI), which can further react with excess PPh(3) to give W(mu-S)(4)Cu-2(PPh(3))(4) . py (VII). Complex I crystallizes in the space group P2(1)/n with the cell parameters: a = 20.049(4), b = 17.010(4), c = 14.311(7) Angstrom; beta = 110.24(3)degrees and Z = 4; R = 0.058 for 4267 independent reflections. The structural study confirms that complex I contains two terminal sulfide ligands, two bridging sulfide ligands, a side-on disulfide ligand, and a planar central W(mu-S)(2)Ni four membered ring. Complex VII crystallizes in the space group C2/c with the cell parameters: a = 26.436(8), b = 20.542(6), c = 19.095(8) Angstrom; beta = 125.00(3)degrees and Z = 4; R = 0.080 for 3802 independent reflections. The structural study reveals a perfect linear arrangement of the three metal atoms Cu-W-Cu.
Resumo:
W-183 NMR spectra were obtained for [La(AsW11O39)(2)](11-), [La(As2W17O61)(2)](17-), [La(SiW9Mo2O39)(2)](13-), [LaSb9W21O86](16-), [LaAs4W40O140](25-) and alpha-, beta-[(CeO)(3) . (SiW9O34)(2)](14-) complexes, Tungsten NMR studies showed that the C-s symmetry of the square antiprism for [La(ASW(11)O(39))(2)](11-) and [La(As2W17O61)(2)](17-) anions keep constant in aqueous solution; the lanthanide accupied the central S-1 site in [LnSb(9)W(21)O(86)](16-) and [LnAs(4)W(40)O(140)](25-) complexes, respectively, and lanthanide metal cations gave [(CeO)(3) . (SiW9O34)(3)](14-) type of complexes with SiW9O3410-.
Resumo:
~(183)W核磁共振研究确认,La(AsW_(11))_2、Lam(As_2W_(17))_2在溶液中仍保持其四方反棱柱的C_3结构,La(SiW_9MO_2)_2阴离子中,2个Mo原子取代了2个等价的W原子,在穴状杂多阴离子LnAs_4W_(10)和LnSb_9W_(21)中,稀土离子占据中心S_1位置,SiW_9与稀土离子生成(LnO)_3(SiW_9)_2型杂多阴离子。
Resumo:
本文研究了Dawson结构取代原子数与相应的183WNMR谱中“极位’W原子的化学位移值间的关系,预测广α-1,2-[P2W16Nb2O62]8-α-1-2,3-[P2W15MoNb2O62]8-“极位”W原子183WNMR谱化学位移们,结果α-1,2-[P2W16Nb2O62]8-中与取代Nb相连“极位”W原子的化学位移值为-88ppm,与取代Nb书对称“极位”W原了的化学位移值为-144.7ppm,与取代Nb不对称“极位”W原子的化学位移值为-130.5ppm,α-1-2,3-[P2W15MoNb2O62]8-中与取代Mo对称“极位”W原子的化学位移值为-134.7ppm,与取代Nb对称“极位”W原子的化学位移值为-145.6ppm.