956 resultados para King, Howard


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redox-sensitive trace metals (Mn, Fe, U, Mo, Re), nutrients and terminal metabolic products (NO3-, NH4+, PO43-, total alkalinity) were for the first time investigated in pore waters of Antarctic coastal sediments. The results of this study reveal a high spatial variability in redox conditions in surface sediments from Potter Cove, King George Island, western Antarctic Peninsula. Particularly in the shallower areas of the bay the significant correlation between sulphate depletion and total alkalinity, the inorganic product of terminal metabolism, indicates sulphate reduction to be the major pathway of organic matter mineralisation. In contrast, dissimilatory metal oxide reduction seems to be prevailing in the newly ice-free areas and the deeper troughs, where concentrations of dissolved iron of up to 700 µM were found. We suggest that the increased accumulation of fine-grained material with high amounts of reducible metal oxides in combination with the reduced availability of metabolisable organic matter and enhanced physical and biological disturbance by bottom water currents, ice scouring and burrowing organisms favours metal oxide reduction over sulphate reduction in these areas. Based on modelled iron fluxes we calculate the contribution of the Antarctic shelf to the pool of potentially bioavailable iron (Feb) to be 6.9x10**3 to 790x10**3 t/yr. Consequently, these shelf sediments would provide an Feb flux of 0.35-39.5/mg/m**2/yr (median: 3.8 mg/m**2/yr) to the Southern Ocean. This contribution is in the same order of magnitude as the flux provided by icebergs and significantly higher than the input by aeolian dust. For this reason suboxic shelf sediments form a key source of iron for the high nutrient-low chlorophyll (HNLC) areas of the Southern Ocean. This source may become even more important in the future due to rising temperatures at the WAP accompanied by enhanced glacier retreat and the accumulation of melt water derived iron-rich material on the shelf.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among bivalves, scallops are exceptional due to their capacity to escape from predators by swimming which is provided by rapid and strong claps that are produced by the phasic muscle interspersed with tonic muscle contractions. Based on the concept of oxygen and capacity-limited thermal tolerance, the following hypothesis was tested: ocean warming and acidification (OWA) would induce disturbances in aerobic metabolic scope and extracellular acid-case status and impair swimming performance in temperate scallops. Following long-term incubation under near-future OWA scenarios [20 vs. 10 °C (control) and 0.112 kPa CO2 (hypercapnia) vs. 0.040 kPa CO2 (normocapnic control)], the clapping performance and metabolic rates (MR) were measured in resting (RMR) and fatigued (maximum MR) king scallops, Pecten maximus, from Roscoff, France. Exposure to OA, either alone or combined with warming, left MR and swimming parameters such as the total number of claps and clapping forces virtually unchanged. Only the duration of the escape response was affected by OA which caused earlier exhaustion in hyper- than in normocapnic scallops at 10 °C. While maximum MR was unaffected, warm exposure increased RMR in both normocapnic and hypercapnic P. maximus resulting in similar Q 10 values of ~2.2. The increased costs of maintenance and the observation of strongly reduced haemolymph PO2 levels indicate that at 20 °C scallops have reached the upper thermal pejus range with unbalanced capacities for aerobic energy metabolism. As a consequence, warming to 20 °C decreased mean phasic force during escape performance until fatigue. The observed prolonged recovery time in warm incubated scallops might be a consequence of elevated metabolic costs at reduced oxygen availability in the warmth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orientation based on visual cues can be extremely difficult in crowded bird colonies due to the presence of many individuals. We studied king penguins (Aptenodytes patagonicus) that live in dense colonies and are constantly faced with such problems. Our aims were to describe adult penguin homing paths on land and to test whether visual cues are important for their orientation in the colony. We also tested the hypothesis that older penguins should be better able to cope with limited visual cues due to their greater experience. We collected and examined GPS paths of homing penguins. In addition, we analyzed 8 months of penguin arrivals to and departures from the colony using data from an automatic identification system. We found that birds rearing chicks did not minimize their traveling time on land and did not proceed to their young (located in creches) along straight paths. Moreover, breeding birds' arrivals and departures were affected by the time of day and luminosity levels. Our data suggest that king penguins prefer to move in and out of the colony when visual cues are available. Still, they are capable of navigating even in complete darkness, and this ability seems to develop over the years, with older breeding birds more likely to move through the colony at nighttime luminosity levels. This study is the first step in unveiling the mysteries of king penguin orientation on land.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vegetation of a small fjord and its adjacent open shore was documented by subaquatic video. The distribution of individual species of macroalgae and the composition of assemblages were compared with gradients of light availability, hydrography, slope inclination, substratum, and exposition to turbulence and ice. The sublittoral fringe is usually abraded by winterly ice floes and devoid of large, perennial algae. Below this zone, the upper sublittoral is dominated by Desmarestia menziesii on steep rock faces, where water movements become irregular, or by Ascoseira mirabilis and Palmaria decipiens on weakly inclined slopes with steady rolling water movements. In the central sublittoral above 15 m, where turbulence is still active, Desmarestia anceps is outcompeting all other species on solid substratum, However, the species is not able to persist on loose material under these conditions. Instead, Himantothallus grandifolius may occur. Deeper, where turbulence usually is negligible, Desmarestia anceps also covers loose material. The change of dominance to Himantothallus grandifolius in the deep sublittoral cannot completely be explained at present. Himantothallus grandifolius also prevails in a mixed assemblage under the influence of grounding icebergs. Most of the smaller algae are opportunists with different degrees of tolerance for turbulence, but some apparently need more stable microhabitats and thus are dependent from continuing suppression of competitive large phaeophytes.