949 resultados para Kinetic undercooling
Resumo:
The ammonia oxidation reaction on supported polycrystalline platinum catalyst was investigated in an aluminum-based microreactor. An extensive set of reactions was included in the chemical reactor modeling to facilitate the construction of a kinetic model capable of satisfactory predictions for a wide range of conditions (NH3 partial pressure, 0.01-0.12 atm; O-2 partial pressure, 0.10-0.88 atm; temperature, 523-673 K; contact time, 0.3-0.7 ms). The elementary surface reactions used in developing the mechanism were chosen based on the literature data concerning ammonia oxidation on a Pt catalyst. Parameter estimates for the kinetic model were obtained using multi-response least squares regression analysis using the isothermal plug-flow reactor approximation. To evaluate the model, the behavior of a microstructured reactor was simulated by means of a complete Navier-Stokes model accounting for the reactions on the catalyst surface and the effect of temperature on the physico-chemical properties of the reacting mixture. In this way, the effect of the catalytic wall temperature non-uniformity and the effect of a boundary layer on the ammonia conversion and selectivity were examined. After further optimization of appropriate kinetic parameters, the calculated selectivities and product yields agree very well with the values actually measured in the microreactor. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The application of an aluminum-based microstructured reactor/heat-exchanger for measuring reaction kinetics in the explosive region is presented. Platinum-catalyzed ammonia oxidation was chosen as a test reaction to demonstrate the feasibility of the method. The reaction kinetics was investigated in a wide range of conditions [NH3 partial pressure: 0.03-0.20 atm, O-2 partial pressure: 0.10-0.88atm; reactant flow 2000-3000 cm(3) min(-1) (STP); temperature 240-360degreesC] over a supported Pt/Al2O3 catalyst (mass of Al2O3 layer in the reactor, 1.95 mg; Pt/Al molar ratio, 0.71; Pt dispersion, 20%). The maximum temperature non-uniformity in the microstructured reactor was ca. 5degreesC, even at conditions corresponding to an adiabatic temperature rise of 1400degreesC. Based on the data obtained, a previous kinetic model for ammonia oxidation was extended. The modified 13-step model describes the data in a considerably wider range of conditions including those with high ammonia loadings and high reaction temperatures. The results indicate the large potential of microstructured devices as reliable tools for kinetic research of highly exothermic reactions.
Resumo:
The kinetics of the photomineralization of salicylic acid (SA) sensitized by Degussa P25 titanium dioxide (TiO2) dispersions in oxygenated aqueous solution are reported as a function of the following experimental parameters: [TiO2], percentage of O-2, [SA], temperature (T) and light intensity (I). The kinetics of SA photomineralization conform to a Langmuir-Hinshelwood kinetic scheme with SA and O-2 adsorbed at different sites with apparent Langmuir adsorption coefficients of (6.1 +/- 1.2) x 10(4) mol(-1) dm(3) and 0.061 +/- 0.007 kPa(-1) respectively. The overall activation energy for the system was determined as 4.6 +/- 0.2 kJ mol(-1). Two major stable reaction intermediates are identified (dihydroxybenzoic acids (DHBA) and catechol (C)) and the existence of a further pathway involving one or more very unstable and, as yet, unidentified reaction intermediates is proposed. A kinetic model is presented which describes the temporal behaviour of the concentrations of SA, CO2 and the major photogenerated intermediates (DHBA and C). This model is used to predict successfully the temporal behaviour of the major intermediates in the photomineralization of SA under non-standard conditions.
Resumo:
The results of a kinetic study of the bleaching of the photostable dye rhodamine 6G by dissolved oxygen, photosensitized by TiO2, are reported. The observed variations in the initial rate of dye photobleaching as a function of the O2 percentage, temperature, incident light intensity and concentrations of rhodamine 6G and sacrificial electron donor are described and the results are rationalized using a proposed photochemical reaction scheme. The photosensitized bleaching of rhodamine 6G dye by TiO2 has a formal quantum yield of 2.65 X 10(-3), but the rate of complete photomineralization is about twofold slower. The overall activation energy for the semiconductor-sensitized dye photobleaching process is 15.0 +/- 1.5 kJ mol-1.
Resumo:
The kinetics of the recovery of the photoinduced transient bleaching of colloidal CdS in the presence of different electron acceptors are examined. In the presence of the zwitterionic viologen, N,N'-dipropyl-2,2'-bipyridinium disulphonate, excitation of colloidal CdS at different flash intensities generates a series of decay profiles which are superimposed when normalized. The shape of the decay curves are as predicted by a first-order activation-controlled model for a log-normal distribution of particles sizes. In contrast, the variation in flash intensity in the presence of a second viologen, N,N'-dipropyl-4,4'-bipyridinium sulphonate, generates normalized decay traces which broaden with increasing flash intensity. This behaviour is predicted by a zero-order diffusion-controlled model for a log-normal distribution of particle radii. The photoreduction of a number of other oxidants sensitized by colloidal CdS is examined and the shape of the decay kinetics interpreted via either the first- or zero-order kinetics models. The rate constants and activation energies derived using these models are consistent with the values expected for an activation- or diffusion-controlled reaction.
KINETIC-STUDY OF THE OXIDATION OF WATER BY CE-4 IONS MEDIATED BY ACTIVATED RUTHENIUM DIOXIDE HYDRATE
Resumo:
Efficient control of the illegal use of anabolic steroids must both take into account metabolic patterns and associated kinetics of elimination; in this context, an extensive animal experiment involving 24 calves and consisting of three administrations of 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate esters was carried out over 50 days. Urine samples were regularly collected during the experiment from all treated and non-treated calves. For sample preparation, a single step high throughput protocol based on 96-well C-18 SPE was developed and validated according to the European Decision 2002/657/EC requirements. Decision limits (CC alpha) for steroids were below 0.1 mu g L-1, except for 19-norandrosterone (CC alpha = 0.7 mu g L-1) and estrone (CC alpha = 0.3 mu g L-1). Kinetics of elimination of the administered 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate were established by monitoring 17 beta-estradiol, 17 alpha-estradiol, estrone and 17 beta-nandrolone, 17 alpha-nandrolone, 19-noretiocholanolone, 19-norandrostenedione, respectively. All animals demonstrated homogeneous patterns of elimination both from a qualitative (metabolite profile) and quantitative point of view (elimination kinetics in urine). Most abundant metabolites were 17 alpha-estradiol and 17 alpha-nandrolone (> 20 and 2 mg L-1, respectively after 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate administration) whereas 17 beta-estradiol, estrone, 17 beta-nandrolone, 19-noretiocholanolone and 19-norandrostenedione were found as secondary metabolites at concentration values up to the mu g L-1 level. No significant difference was observed between male and female animals. The effect of several consecutive injections on elimination profiles was studied and revealed a tendency toward a decrease in the biotransformation of administered steroid 17 beta form. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The chromium bearing wastewater in this study was used to simulate the low concentration discharge from a major aerospace manufacturing facility in the UK. Removal of chromium ions from aqueous solutions using raw dolomite was achieved using batch adsorption experiments. The effect of; initial Cr(VI) concentration, amount of adsorbent, solution temperature, dolomite particle size and shaking speed was studied. Maximum chromium removal was found at pH 2.0. A kinetic study yielded an optimum equilibrium time of 96 h with an adsorbent dose of 1 g/L Sorption studies were conducted over a concentration range of 5-50 mg/L Cr(VI) removal decreased with an increase in temperature (q(max): 20 degrees C = 10.01 mg/g; 30 degrees C = 8.385 mg/g; 40 degrees C = 6.654 mg/g; and 60 degrees C = 5.669 mg/g). Results suggest that the equilibrium adsorption was described by the Freundlich model. The kinetic processes of Cr(VI) adsorption onto dolomite were described in order to provide a more clear interpretation of the adsorption rate and uptake mechanism. The overall kinetic data was acceptably explained by a pseudo first-order rate model. Evaluated Delta G degrees and Delta H degrees specify the spontaneous and exothermic nature of the reaction. The adsorption takes place with a decrease in entropy (Delta S degrees is negative). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
From the molecular mechanism of antagonist unbinding in the ß(1) and ß(2) adrenoceptors investigated by steered molecular dynamics, we attempt to provide further possibilities of ligand subtype and subspecies selectivity. We have simulated unbinding of ß(1) -selective Esmolol and ß(2) -selective ICI-118551 from both receptors to the extracellular environment and found distinct molecular features of unbinding. By calculating work profiles, we show different preference in antagonist unbinding pathways between the receptors, in particular, perpendicular to the membrane pathway is favourable in the ß(1) adrenoceptor, whereas the lateral pathway involving helices 5, 6 and 7 is preferable in the ß(2) adrenoceptor. The estimated free energy change of unbinding based on the preferable pathway correlates with the experimental ligand selectivity. We then show that the non-conserved K347 (6.58) appears to facilitate in guiding Esmolol to the extracellular surface via hydrogen bonds in the ß(1) adrenoceptor. In contrast, hydrophobic and aromatic interactions dominate in driving ICI-118551 through the easiest pathway in the ß(2) adrenoceptor. We show how our study can stimulate design of selective antagonists and discuss other possible molecular reasons of ligand selectivity, involving sequential binding of agonists and glycosylation of the receptor extracellular surface. © 2012 John Wiley & Sons A/S.
Resumo:
In this study we report on the synthesis, kinetic characterization and application of a novel biotinylated and active-site-directed inactivator of cathepsin B. Thus the peptidyliazomethane biotinyl-Phe-Ala-diazomethane has been synthesized by a combination of solid-phase and solution methodologies and has been shown to be a very efficient inactivator of bovine and human cathepsin B. The respective apparent second-order rate constants (k0bs./[I]) for the inactivation of the human and bovine enzymes by this reagent, namely approximately 5.4 x 10(4) M-1 and approximately 7.8 x 10(4) M-1, compare very favourably with those values determined for the urethane-protected analogue benzloxycarbonyl-Phe-Ala-chloromethane first described by Green & Shaw [(1981) J.Biol. Chem. 256, 1923-1928], thus demonstrating that the presence of the biotin moiety at the P3 position is compatible with inhibitor effectiveness. The utilization of this reagent for the detection of cathepsin B in electrophoretic gels, using Western blotting and in combination with a streptavidin/alkaline phosphatase detection system, is also demonstrated. Given that the peptidydiazomethanes exhibit a pronounced reactivity towards cysteine proteinases, we feel that the present label may well constitute the archetypal example of a wide range of reagents for the selective labelling of this class of proteinase, even in a complex biological milieu containing additional classes of proteinases.
Resumo:
Lipopolysaccharide is a major component of the outer membrane of gram-negative bacteria and provides a permeability barrier to many commonly used antibiotics. ADP-heptose residues are an integral part of the LPS inner core, and mutants deficient in heptose biosynthesis demonstrate increased membrane permeability. The heptose biosynthesis pathway involves phosphorylation and dephosphorylation steps not found in other pathways for the synthesis of nucleotide sugar precursors. Consequently, the heptose biosynthetic pathway has been marked as a novel target for antibiotic adjuvants, which are compounds that facilitate and potentiate antibiotic activity. D-alpha,beta-D-heptose-1,7-bisphosphate phosphatase (GmhB) catalyzes the third essential step of LPS heptose biosynthesis. This study describes the first crystal structure of GmhB and enzymatic analysis of the protein. Structure-guided mutations followed by steady state kinetic analysis, together with established precedent for HAD phosphatases, suggest that GmhB functions through a phosphoaspartate intermediate. This study provides insight into the structure-function relationship of GmhB, a new target for combatting gram-negative bacterial infection.