549 resultados para Kate Dunlop
Resumo:
Background Depression is a heterogeneous mental illness. Neurostimulation treatments, by targeting specific nodes within the brain’s emotion-regulation network, may be useful both as therapies and as probes for identifying clinically relevant depression subtypes. Methods Here, we applied 20 sessions of magnetic resonance imaging-guided repetitive transcranial magnetic stimulation (rTMS) to the dorsomedial prefrontal cortex in 47 unipolar or bipolar patients with a medication-resistant major depressive episode. Results Treatment response was strongly bimodal, with individual patients showing either minimal or marked improvement. Compared with responders, nonresponders showed markedly higher baseline anhedonia symptomatology (including pessimism, loss of pleasure, and loss of interest in previously enjoyed activities) on item-by-item examination of Beck Depression Inventory-II and Quick Inventory of Depressive Symptomatology ratings. Congruently, on baseline functional magnetic resonance imaging, nonresponders showed significantly lower connectivity through a classical reward pathway comprising ventral tegmental area, striatum, and a region in ventromedial prefrontal cortex. Responders and nonresponders also showed opposite patterns of hemispheric lateralization in the connectivity of dorsomedial and dorsolateral regions to this same ventromedial region. Conclusions The results suggest distinct depression subtypes, one with preserved hedonic function and responsive to dorsomedial rTMS and another with disrupted hedonic function, abnormally lateralized connectivity through ventromedial prefrontal cortex, and unresponsive to dorsomedial rTMS. Future research directly comparing the effects of rTMS at different targets, guided by neuroimaging and clinical presentation, may clarify whether hedonia/reward circuit integrity is a reliable marker for optimizing rTMS target selection.
Resumo:
Understanding how climate change can affect crop-pollinator systems helps predict potential geographical mismatches between a crop and its pollinators, and therefore identify areas vulnerable to loss of pollination services. We examined the distribution of orchard species (apples, pears, plums and other top fruits) and their pollinators in Great Britain, for present and future climatic conditions projected for 2050 under the SRES A1B Emissions Scenario. We used a relative index of pollinator availability as a proxy for pollination service. At present there is a large spatial overlap between orchards and their pollinators, but predictions for 2050 revealed that the most suitable areas for orchards corresponded to low pollinator availability. However, we found that pollinator availability may persist in areas currently used for fruit production, but which are predicted to provide sub-optimal environmental suitability for orchard species in the future. Our results may be used to identify mitigation options to safeguard orchard production against the risk of pollination failure in Great Britain over the next 50 years; for instance choosing fruit tree varieties that are adapted to future climatic conditions, or boosting wild pollinators through improving landscape resources. Our approach can be readily applied to other regions and crop systems, and expanded to include different climatic scenarios.
Resumo:
To date, only one study has investigated educational attainment in poor (reading) comprehenders, providing evidence of poor performance on national UK school tests at age 11 years relative to peers (Cain & Oakhill, 2006). In the present study, we adopted a longitudinal approach, tracking attainment on such tests from 11 years to the end of compulsory schooling in the UK (age 16 years). We aimed to investigate the proposal that educational weaknesses (defined as poor performance on national assessments) might become more pronounced over time, as the curriculum places increasing demands on reading comprehension. Participants comprised 15 poor comprehenders and 15 controls; groups were matched for chronological age, nonverbal reasoning ability and decoding skill. Children were identified at age 9 years using standardised measures of nonverbal reasoning, decoding and reading comprehension. These measures, along with a measure of oral vocabulary knowledge, were repeated at age 11 years. Data on educational attainment were collected from all participants (N = 30) at age 11 and from a subgroup (n = 21) at 16 years. Compared to controls, educational attainment in poor comprehenders was lower at ages 11 and 16 years, an effect that was significant at 11 years. When poor comprehenders were compared to national performance levels, they showed significantly lower performance at both time points. Low educational attainment was not evident for all poor comprehenders. Nonetheless, our findings point to a link between reading comprehension difficulties in mid to late childhood and poor educational outcomes at ages 11 and 16 years. At these ages, pupils in the UK are making key transitions: they move from primary to secondary schools at 11, and out of compulsory schooling at 16.
Resumo:
We extended 'littleBits' electronic components by attaching them to a larger base that was designed to help make them easier to pick up and handle, and easier to assemble into circuits for people with learning disabilities. A pilot study with a group of students with learning disabilities was very positive. There were fewer difficulties in assembling the components into circuits, and problems such as attempting to connect them the wrong way round or the wrong way up were eliminated completely.
Resumo:
What is the relationship between magnitude judgments relying on directly available characteristics versus probabilistic cues? Question frame was manipulated in a comparative judgment task previously assumed to involve inference across a probabilistic mental model (e.g., “which city is largest” – the “larger” question – versus “which city is smallest” – the “smaller” question). Participants identified either the largest or smallest city (Experiments 1a, 2) or the richest or poorest person (Experiment 1b) in a three-alternative forced choice (3-AFC) task (Experiment 1) or 2-AFC task (Experiment 2). Response times revealed an interaction between question frame and the number of options recognized. When asked the smaller question, response times were shorter when none of the options were recognized. The opposite pattern was found when asked the larger question: response time was shorter when all options were recognized. These task-stimuli congruity results in judgment under uncertainty are consistent with, and predicted by, theories of magnitude comparison which make use of deductive inferences from declarative knowledge.
Resumo:
Insect pollination benefits over three quarters of the world's major crops. There is growing concern that observed declines in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators is therefore crucial for estimating their availability to pollinate crops; however, in general, we have an incomplete knowledge of where these pollinators occur. We propose a method to predict geographical patterns of pollination service to crops, novel in two elements: the use of pollinator records rather than expert knowledge to predict pollinator occurrence, and the inclusion of the managed pollinator supply. We integrated a maximum entropy species distribution model (SDM) with an existing pollination service model (PSM) to derive the availability of pollinators for crop pollination. We used nation-wide records of wild and managed pollinators (honey bees) as well as agricultural data from Great Britain. We first calibrated the SDM on a representative sample of bee and hoverfly crop pollinator species, evaluating the effects of different settings on model performance and on its capacity to identify the most important predictors. The importance of the different predictors was better resolved by SDM derived from simpler functions, with consistent results for bees and hoverflies. We then used the species distributions from the calibrated model to predict pollination service of wild and managed pollinators, using field beans as a test case. The PSM allowed us to spatially characterize the contribution of wild and managed pollinators and also identify areas potentially vulnerable to low pollination service provision, which can help direct local scale interventions. This approach can be extended to investigate geographical mismatches between crop pollination demand and the availability of pollinators, resulting from environmental change or policy scenarios.
Resumo:
There has been an increased emphasis upon the application of science for humanitarian and development planning, decision-making and practice; particularly in the context of understanding, assessing and anticipating risk (e.g. HERR, 2011). However, there remains very little guidance for practitioners on how to integrate sciences they may have had little contact with in the past (e.g. climate). This has led to confusion as to which ‘science’ might be of use and how it would be best utilised. Furthermore, since this integration has stemmed from a need to be more predictive, agencies are struggling with the problems associated with uncertainty and probability. Whilst a range of expertise is required to build resilience, these guidelines focus solely upon the relevant data, information, knowledge, methods, principles and perspective which scientists can provide, that typically lie outside of current humanitarian and development approaches. Using checklists, real-life case studies and scenarios the full guidelines take practitioners through a five step approach to finding, understanding and applying science. This document provides a short summary of the five steps and some key lessons for integrating science.
Resumo:
Understanding observed changes to the global water cycle is key to predicting future climate changes and their impacts. While many datasets document crucial variables such as precipitation, ocean salinity, runoff, and humidity, most are uncertain for determining long-term changes. In situ networks provide long time-series over land but are sparse in many regions, particularly the tropics. Satellite and reanalysis datasets provide global coverage, but their long-term stability is lacking. However, comparisons of changes among related variables can give insights into the robustness of observed changes. For example, ocean salinity, interpreted with an understanding of ocean processes, can help cross-validate precipitation. Observational evidence for human influences on the water cycle is emerging, but uncertainties resulting from internal variability and observational errors are too large to determine whether the observed and simulated changes are consistent. Improvements to the in situ and satellite observing networks that monitor the changing water cycle are required, yet continued data coverage is threatened by funding reductions. Uncertainty both in the role of anthropogenic aerosols, and due to large climate variability presently limits confidence in attribution of observed changes.
Resumo:
The launch of the Double Star mission has provided the opportunity to monitor events at distinct locations on the dayside magnetopause, in coordination with the quartet of Cluster spacecraft. We present results of two such coordinated studies. In the first, 6 April 2004, both Cluster and the Double Star TC-1 spacecraft were on outbound transits through the dawn-side magnetosphere. Cluster observed northward moving FTEs with +/- polarity, whereas TC-1 saw -/+ polarity FTEs. The strength, motion and occurrence of the FTE signatures changes somewhat according to changes in IMF clock angle. These observations are consistent with ongoing reconnection on the dayside magnetopause, resulting in a series of flux transfer events (FTEs) seen both at Cluster and TC-1. The observed polarity and motion of each FTE signature advocates the existence of an active reconnection region consistently located between the positions of Cluster and TC-1, lying north and south of the reconnection line, respectively. This scenario is supported by the application of a model, designed to track flux tube motion, to conditions appropriate for the prevailing interplanetary conditions. The results from the model confirm the observational evidence that the low-latitude FTE dynamics is sensitive to changes in convected upstream conditions. In particular, changing the interplanetary magnetic field (IMF) clock angle in the model predicts that TC-1 should miss the resulting FTEs more often than Cluster, as is observed. For the second conjunction, on the 4 Jan 2005, the Cluster and TC-1 spacecraft all exited the dusk-side magnetosphere almost simultaneously, with TC-1 lying almost equatorial and Cluster at northern latitudes at about 4 RE from TC-1. The spacecraft traverse the magnetopause during a strong reversal in the IMF from northward to southward and a number of magnetosheath FTE signatures are subsequently observed. One coordinated FTE, studied in detail by Pu et al, [this issue], carries and inflowing energetic electron population and shows a motion and orientation which is similar at all spacecraft and consistent with the predictions of the model for the flux tube dynamics, given a near sub-solar reconnection line. This event can be interpreted either as the passage of two parallel flux tubes arising from adjacent x-line positions, or as a crossing of a single flux tube at different positions.
Resumo:
Particles with energies of tens to hundreds of keV provide a powerful diagnostic of the acceleration processes that characterise the Earth’s magnetosphere, in particular the highly dynamic nightside plasma sheet. Such energetic particles can be detected by the RAPID experiment, onboard the quartet of Cluster spacecraft. We present results from the study of a series of quasi-periodic, intense energetic electron signatures in the magnetotail revealed by RAPID Imaging Electron Spectrometer (IES) observations some 19 Earth radii (RE) downtail, associated with the passage of a highly geoeffective, high-speed solar wind stream. The RAPID-IES signatures – interpreted in combination with magnetic field and lower-energy electron measurements from the FGM and PEACE experiments on Cluster, respectively, and with reference to energetic electron observations from the CEPPAD-IES instrument on Polar – are understood in terms of repeated encounters of the Cluster spacecraft with the tail plasma sheet in response to the resultant tail reconfiguration in each of a series of substorms. We consider the Cluster response for two of these substorms (identified according to the conventional expansion phase onset indicators of particle injection at geosynchronous orbit and Pi2 pulsations at Earth) in terms of two possible tail configurations in which a Near-Earth Neutral Line forms either antisunward or sunward of the Cluster spacecraft. The latter scenario, in which the reconnection X-line is assumed to form sunward of Cluster and subsequently migrate downtail such that the spacecraft become engulfed in a tailward expanding plasma sheet, is shown to be more consistent with the observations.
Resumo:
The recent launch of the equatorial spacecraft of the Double Star mission, TC-1, has provided an unprecedented opportunity to monitor the southern hemisphere dayside magnetopause boundary layer in conjunction with northern hemisphere observations by the quartet of Cluster spacecraft. We present first results of one such situation where, on 6 April 2004, both Cluster and the Double Star TC-1 spacecraft were on outbound transits through the dawnside magnetosphere. The observations are consistent with ongoing reconnection on the dayside magnetopause, resulting in a series of flux transfer events (FTEs) seen both at Cluster and TC-1, which appear to lie north and south of the reconnection line, respectively. In fact, the observed polarity and motion of each FTE signature advocates the existence of an active reconnection region consistently located between the positions of Cluster and TC-1, with Cluster observing northward moving FTEs with +/− polarity, whereas TC-1 sees −/+ polarity FTEs. This assertion is further supported by the application of a model designed to track flux tube motion for the prevailing interplanetary conditions. The results from this model show, in addition, that the low-latitude FTE dynamics are sensitive to changes in convected upstream conditions. In particular, changing the interplanetary magnetic field (IMF) clock angle in the model suggests that TC-1 should miss the resulting FTEs more often than Cluster and this is borne out by the observations.
Resumo:
On 7 December 2000, during 13:30-15:30 UT the MIRACLE all-sky camera at Ny Alesund observed auroras at high-latitudes (MLAT similar to 76) simultaneously when the Cluster spacecraft were skimming the magnetopause in the same MLT sector (at similar to 16:00-18:00 MLT). The location of the auroras (near the ionospheric convection reversal boundary) and the clear correlation between their dynamics and IMF variations suggests their close relationship with R1 currents. Consequently, we can assume that the Cluster spacecraft were making observations in the magnetospheric region associated with the auroras, although exact magnetic conjugacy between the ground-based and satellite observations did not exist. The solar wind variations appeared to control both the behaviour of the auroras and the magnetopause dynamics. Auroral structures were observed at Ny Alesund especially during periods of negative IMF B-Z. In addition, the Cluster spacecraft experienced periodic (T similar to 4 - 6 min) encounters between magnetospheric and magnetosheath plasmas. These undulations of the boundary can be interpreted as a consequence of tailward propagating magnetopause surface waves. Simultaneous dusk sector ground-based observations show weak, but discernible magnetic pulsations (Pc 5) and occasionally periodic variations (T - 2 - 3 min) in the high-latitude auroras. In the dusk sector, Pc 5 activity was stronger and had characteristics that were consistent with a field line resonance type of activity. When IMF BZ stayed positive for a longer period, the auroras were dimmer and the spacecraft stayed at the outer edge of the magnetopause where they observed electromagnetic pulsations with T similar to 1 min. We find these observations interesting especially from the viewpoint of previously presented studies relating poleward-moving high-latitude auroras with pulsation activity and MHD waves propagating at the magnetospheric boundary layers.
Resumo:
On 14 January 2001, the four Cluster spacecraft passed through the northern magnetospheric mantle in close conjunction to the EISCAT Svalbard Radar (ESR) and approached the post-noon dayside magnetopause over Greenland between 13:00 and 14:00 UT During that interval, a sudden reorganisation of the high-latitude dayside convection pattern accurred after 13:20 UT most likely caused by a direction change of the Solar wind magnetic field. The result was an eastward and poleward directed flow-channel, as monitored by the SuperDARN radar network and also by arrays of ground-based magnetometers in Canada, Greenland and Scandinavia. After an initial eastward and later poleward expansion of the flow-channel between 13:20 and 13:40 UT, the four Cluster spacecraft, and the field line footprints covered by the eastward looking scan cycle of the Sondre Stromfjord incoherent scatter radar were engulfed by cusp-like precipitation with transient magnetic and electric field signatures. In addition, the EISCAT Svalbard Radar detected strong transient effects of the convection reorganisation, a poleward moving precipitation, and a fast ion flow-channel in association with the auroral structures that suddenly formed to the west and north of the radar. From a detailed analysis of the coordinated Cluster and ground-based data, it was found that this extraordinary transient convection pattern, indeed, had moved the cusp precipitation from its former pre-noon position into the late post-noon sector, allowing for the first and quite unexpected encounter of the cusp by the Cluster spacecraft. Our findings illustrate the large amplitude of cusp dynamics even in response to moderate solar wind forcing. The global ground-based data proves to be an invaluable tool to monitor the dynamics and width of the affected magnetospheric regions.
Resumo:
We study a series of transient entries into the low-latitude boundary layer (LLBL) of all four Cluster spacecraft during an outbound pass through the mid-afternoon magnetopause ([X(GSM), Y(GSM), Z(GSM)] approximate to [2, 7, 9] R(E)). The events take place during an interval of northward IMF, as seen in the data from the ACE satellite and lagged by a propagation delay of 75 min that is well-defined by two separate studies: (1) the magnetospheric variations prior to the northward turning (Lockwood et al., 2001, this issue) and (2) the field clock angle seen by Cluster after it had emerged into the magnetosheath (Opgenoorth et al., 2001, this issue). With an additional lag of 16.5 min, the transient LLBL events cor-relate well with swings of the IMF clock angle (in GSM) to near 90degrees. Most of this additional lag is explained by ground-based observations, which reveal signatures of transient reconnection in the pre-noon sector that then take 10-15 min to propagate eastward to 15 MLT, where they are observed by Cluster. The eastward phase speed of these signatures agrees very well with the motion deduced by the cross-correlation of the signatures seen on the four Cluster spacecraft. The evidence that these events are reconnection pulses includes: transient erosion of the noon 630 nm (cusp/cleft) aurora to lower latitudes; transient and travelling enhancements of the flow into the polar cap, imaged by the AMIE technique; and poleward-moving events moving into the polar cap, seen by the EISCAT Svalbard Radar (ESR). A pass of the DMSP-F15 satellite reveals that the open field lines near noon have been opened for some time: the more recently opened field lines were found closer to dusk where the flow transient and the poleward-moving event intersected the satellite pass. The events at Cluster have ion and electron characteristics predicted and observed by Lockwood and Hapgood (1998) for a Flux Transfer Event (FTE), with allowance for magnetospheric ion reflection at Alfvenic disturbances in the magnetopause reconnection layer. Like FTEs, the events are about 1 R(E) in their direction of motion and show a rise in the magnetic field strength, but unlike FTEs, in general, they show no pressure excess in their core and hence, no characteristic bipolar signature in the boundary-normal component. However, most of the events were observed when the magnetic field was southward, i.e. on the edge of the interior magnetic cusp, or when the field was parallel to the magnetic equatorial plane. Only when the satellite begins to emerge from the exterior boundary (when the field was northward), do the events start to show a pressure excess in their core and the consequent bipolar signature. We identify the events as the first observations of FTEs at middle altitudes.
Resumo:
During the interval between 8:00-9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EIS-CAT Svalbard Radar (ESR) at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches"), with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( 5) min, the interplanetary magnetic field (IMF) had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event), was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites) show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10-20 eV) and the topside ionospheric enhancements seen by the ESR (at 400-700 km). We suggest that a potential barrier at the magnetopause, which prevents the lowest energy electrons from entering the magnetosphere, is reduced when and where the boundary-normal magnetic field is enhanced and that the observed polar cap patches are produced by the consequent enhanced precipitation of the lowest energy electrons, making them and the low energy electron precipitation fossil remnants of the magnetopause reconnection rate pulses.