969 resultados para Ischemia-reperfusion


Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION Micro- or macroreplantation is classified depending on the level of amputation, distal or proximal to the wrist. This study was performed to review our experience in macroreplantation of the upper extremity with special attention to technical considerations and outcomes. MATERIALS AND METHODS Between January 1990 and December 2010, 11 patients with a complete amputation of the upper extremity proximal to the wrist were referred for replantations to our department. The patients, one woman and ten men, had a mean age of 43.4 ± 18.2 years (range 19-76 years). There were two elbow, two proximal forearm, four mid-forearm, and three distal forearm amputations. The mechanism of injury was crush in four, crush-avulsion in five and guillotine amputation in two patients. The Chen classification was used to assess the postoperative outcomes. The mean follow-up after macroreplantation was 7.5 ± 6.3 years (range 2-21 years). RESULTS All but one were successfully replanted and regained limb function: Chen I in four cases (36 %), Chen II in three cases (27 %), Chen III in two cases (18 %), and Chen IV in one patient (9 %). We discuss the steps of the macroreplantation technique, the need to minimize ischemic time and the risk of ischemia reperfusion injuries. CONCLUSION Thanks to improvements in technique, the indications for limb preservation after amputation can be expanded. However, because of their rarity, replantations should be performed at specialist replantation centers. LEVEL OF EVIDENCE Level IV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ischemia-reperfusion has been reported to be associated with augmented oxidative stress in the course of surgery, which might be causally involved in the onset of atrial fibrillation (AF), the most common arrhythmia after cardiac surgery. We hypothesized that supplementation of antioxidants and n-3 polyunsaturated fatty acids (n-3 PUFAs) might lower the incidence of AF following coronary artery bypass graft (CABG) surgery. In the present study, by monitoring oxidative stress in the course of CABG surgery, we analyzed the efficacy of vitamins (ascorbic acid and α-tocopherol) and/or n-3 PUFAs (eicosapentaenoic acid and docosahexaenoic acid). Subjects (n = 75) were divided into 4 subgroups: control, vitamins, n-3 PUFAs, and a combination of vitamins and n-3 PUFAs. Fluorescent techniques were used to measure the antioxidative capacity, i.e. ability to inhibit oxidation. Total peroxides, endogenous peroxidase activity, and antibodies against oxidized LDL (oLAb) were used as serum oxidative stress biomarkers. Post-operative increase in oxidative stress was associated with the consumption of antioxidants and a simultaneous onset of AF. This was confirmed through an increased peroxide level and a decreased oLAb titer in control and n-3 PUFAs groups, indicating the binding of antibodies to oxidative modified epitopes. In both subgroups that were supplemented with vitamins, total peroxides decreased, and the maintenance of a constant IgG antibody titer was facilitated. However, treatment with vitamins or n-3 PUFAs was inefficient with respect to AF onset and its duration. We conclude that the administration of vitamins attenuates post-operative oxidative stress in the course of CABG surgery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Endothelial glycocalyx participates in the maintenance of vascular integrity, and its perturbations cause capillary leakage, loss of vascular responsiveness, and enhanced adhesion of leukocytes and platelets. We hypothesized that marked shedding of the glycocalyx core protein, syndecan-1, occurs in end-stage liver disease (ESLD) and that it increases during orthotopic liver transplantation (OLT). We further evaluated the effects of general anesthesia on glycocalyx shedding and its association with acute kidney injury (AKI) after OLT. PATIENTS AND METHODS Thirty consecutive liver transplant recipients were enrolled in this prospective study. Ten healthy volunteers served as a control. Acute kidney injury was defined by Acute Kidney Injury Network criteria. RESULTS Plasma syndecan-1 was significantly higher in ESLD patients than in healthy volunteers (74.3 ± 59.9 vs 10.7 ± 9.4 ng/mL), and it further increased significantly after reperfusion (74.3 ± 59.9 vs 312.6 ± 114.8 ng/mL). The type of general anesthesia had no significant effect on syndecan-1. Syndecan-1 was significantly higher during the entire study in patients with posttransplant AKI stage 2 or 3 compared to patients with AKI stage 0 or 1. The area under the curve of the receiver operating characteristics curve of syndecane-1 to predict AKI stage 2 or 3 within 48 hours after reperfusion was 0.76 (95% confidence interval, 0.57-0.89, P = 0.005). CONCLUSIONS Patients with ESLD suffer from glycocalyx alterations, and ischemia-reperfusion injury during OLT further exacerbates its damage. Despite a higher incidence of AKI in patients with elevated syndecan-1, it is not helpful to predict de novo AKI. Volatile anesthetics did not attenuate glycocalyx shedding in human OLT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION Cardiac myocytes utilize three high-capacity Na transport processes whose precise function can determine myocyte fate and the triggering of arrhythmias in pathological settings. We present recent results on the regulation of all three transporters that may be important for an understanding of cardiac function during ischemia/reperfusion episodes. METHODS AND RESULTS Refined ion selective electrode (ISE) techniques and giant patch methods were used to analyze the function of cardiac Na/K pumps, Na/Ca exchange (NCX1), and Na/H exchange (NHE1) in excised cardiac patches and intact myocytes. To consider results cohesively, simulations were developed that account for electroneutrality of the cytoplasm, ion homeostasis, water homeostasis (i.e., cell volume), and cytoplasmic pH. The Na/K pump determines the average life-time of Na ions (3-10 minutes) as well as K ions (>30 minutes) in the cytoplasm. The long time course of K homeostasis can determine the time course of myocyte volume changes after ion homeostasis is perturbed. In excised patches, cardiac Na/K pumps turn on slowly (-30 seconds) with millimolar ATP dependence, when activated for the first time. In steady state, however, pumps are fully active with <0.2 mM ATP and are nearly unaffected by high ADP (2 mM) and Pi (10 mM) concentrations as may occur in ischemia. NCX1s appear to operate with slippage that contributes to background Na influx and inward current in heart. Thus, myocyte Na levels may be regulated by the inactivation reactions of the exchanger which are both Na- and proton-dependent. NHE1 also undergo strong Na-dependent inactivation, whereby a brief rise of cytoplasmic Na can cause inactivation that persists for many minutes after cytoplasmic Na is removed. This mechanism is blocked by pertussis toxin, suggesting involvement of a Na-dependent G-protein. Given that maximal NCX1- and NHE1-mediated ion fluxes are much greater than maximal Na/K pump-mediated Na extrusion in myocytes, the Na-dependent inactivation mechanisms of NCX1 and NHE1 may be important determinants of cardiac Na homeostasis. CONCLUSIONS Na/K pumps appear to be optimized to continue operation when energy reserves are compromised. Both NCX1 and NHE1 activities are regulated by accumulation of cytoplasmic Na. These principles may importantly control cardiac cytoplasmic Na and promote myocyte survival during ischemia/reperfusion episodes by preventing Ca overload.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent experimental evidence suggests that reactive nitrogen oxide species can contribute significantly to postischemic myocardial injury. The aim of the present study was to evaluate the role of two reactive nitrogen oxide species, nitroxyl (NO−) and nitric oxide (NO⋅), in myocardial ischemia and reperfusion injury. Rabbits were subjected to 45 min of regional myocardial ischemia followed by 180 min of reperfusion. Vehicle (0.9% NaCl), 1 μmol/kg S-nitrosoglutathione (GSNO) (an NO⋅ donor), or 3 μmol/kg Angeli’s salt (AS) (a source of NO−) were given i.v. 5 min before reperfusion. Treatment with GSNO markedly attenuated reperfusion injury, as evidenced by improved cardiac function, decreased plasma creatine kinase activity, reduced necrotic size, and decreased myocardial myeloperoxidase activity. In contrast, the administration of AS at a hemodynamically equieffective dose not only failed to attenuate but, rather, aggravated reperfusion injury, indicated by an increased left ventricular end diastolic pressure, myocardial creatine kinase release and necrotic size. Decomposed AS was without effect. Co-administration of AS with ferricyanide, a one-electron oxidant that converts NO− to NO⋅, completely blocked the injurious effects of AS and exerted significant cardioprotective effects similar to those of GSNO. These results demonstrate that, although NO⋅ is protective, NO− increases the tissue damage that occurs during ischemia/reperfusion and suggest that formation of nitroxyl may contribute to postischemic myocardial injury.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The proinflammatory cytokine IL-18 was investigated for its role in human myocardial function. An ischemia/reperfusion (I/R) model of suprafused human atrial myocardium was used to assess myocardial contractile force. Addition of IL-18 binding protein (IL-18BP), the constitutive inhibitor of IL-18 activity, to the perifusate during and after I/R resulted in improved contractile function after I/R from 35% of control to 76% with IL-18BP. IL-18BP treatment also preserved intracellular tissue creatine kinase levels (by 420%). Steady-state mRNA levels for IL-18 were elevated after I/R, and the concentration of IL-18 in myocardial homogenates was increased (control, 5.8 pg/mg vs. I/R, 26 pg/mg; P < 0.01). Active IL-18 requires cleavage of its precursor form by the IL-1β-converting enzyme (caspase 1); inhibition of caspase 1 also attenuated the depression in contractile force after I/R (from 35% of control to 75.8% in treated atrial muscle; P < 0.01). Because caspase 1 also cleaves the precursor IL-1β, IL-1 receptor blockade was accomplished by using the IL-1 receptor antagonist. IL-1 receptor antagonist added to the perifusate also resulted in a reduction of ischemia-induced contractile dysfunction. These studies demonstrate that endogenous IL-18 and IL-1β play a significant role in I/R-induced human myocardial injury and that inhibition of caspase 1 reduces the processing of endogenous precursors of IL-18 and IL-1β and thereby prevents ischemia-induced myocardial dysfunction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In many diseases, tissue hypoxia occurs in conjunction with other inflammatory processes. Since previous studies have demonstrated a role for leukocytes in ischemia/reperfusion injury, we hypothesized that endothelial hypoxia may "superinduce" expression of an important leukocyte adhesion molecule, E-selectin (ELAM-1, CD62E). Bovine aortic endothelial monolayers were exposed to hypoxia in the presence or absence of tumor-necrosis factor alpha (TNF-alpha) or lipopolysaccharide (LPS). Cell surface E-selectin was quantitated by whole cell ELISA or by immunoprecipitation using polyclonal anti-E-selectin sera. Endothelial mRNA levels were assessed using ribonuclease protection assays. Hypoxia alone did not induce endothelial E-selectin expression. However, enhanced induction of E-selectin was observed with the combination of hypoxia and TNF-alpha (270% increase over normoxia and TNF-alpha) or hypoxia and LPS (190% increase over normoxia and LPS). These studies revealed that a mechanism for such enhancement may be hypoxia-elicited decrements in endothelial intracellular levels of cAMP (<50% compared with normoxia). Addition of forskolin and isobutyl-methyl-xanthine during hypoxia resulted in reversal of cAMP decreases and a loss of enhanced E-selectin surface expression with the combination of TNF-alpha and hypoxia. We conclude that endothelial hypoxia may provide a novel signal for superinduction of E-selectin during states of inflammation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le récepteur éboueur CD36 facilite l’internalisation des acides gras libres non estérifiés (AGNE) au niveau des tissus cardiaque et périphériques. Lors d’une ischémie-reperfusion du myocarde (MI/R), les dommages produits sont en partie liés à l’internalisation des AGNE et à la production d’espèces réactives de l’oxygène, contrairement à ce qui est observé chez des souris déficientes en CD36 (CD36-/-). Nous avons émis l’hypothèse selon laquelle le CP-3(iv), un ligand synthétique du récepteur CD36, exercerait un effet cardioprotecteur en réduisant la taille de la zone myocardique infarcie lors d’une ischémie transitoire du myocarde. Nos objectifs étaient 1) de déterminer l’effet cardioprotecteur du CP-3(iv) et 2) de définir son mécanisme. Pour cela, des études in vivo et ex vivo ont été faites. Des souris de type sauvage ont été traitées avec le CP-3(iv) (289 nmol/kg) par voie sous-cutanée pendant 14 jours avant d’être soumises à 30 minutes d’ischémie suivant la ligature de l’artère coronaire gauche descendante et de sa reperfusion pendant une période de 6 ou 48 heures. De plus, des coeurs isolés de souris ont été perfusés 30 minutes, suivi de 40 minutes à faible débit (10%) et de 30 minutes de reperfusion pendant laquelle le coeur est perfusé avec le CP-3(iv) à une concentration de 10-6 M. Nos travaux ont montré que l’effet cardioprotecteur d’un traitement préventif par le CP-3(iv) permet de diminuer la taille de l’infarctus et préserve l’hémodynamie cardiaque de façon dépendante du CD36 puisque cet effet est non visible chez les souris CD36-/-. De plus, le CP-3(iv) exerce non seulement un effet systémique, mais aussi un effet cardioprotecteur direct sur le coeur isolé.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To identify potential molecular genetic determinants of cardiovascular ischemic tolerance in wild-type and transgenic hearts overexpressing A(1) adenosine receptors (A(1)ARs). Methods: cDNA microarrays were used to explore expression of 1824 genes ill wild-type hearts and ischemia-tolerant mouse hearts overexpressing A(1)ARs. Results: Overexpression of A(1)ARs reduced post-ischemic contractile dysfunction, limited arrhythmogenesis, and reduced necrosis by similar to80% in hearts subjected to 30 min global ischemia 60 mill reperfusion. Cardioprotection was abrogated by acute A(1)AR antagonism, and only a small number (19) of genes were modified by A(1)AR overexpression in normoxic hearts. Ischemia-reperfusion significantly altered expression of 75 genes in wild-type hearts (14 induced, 61 down-regulated), including genes for metabolic enzymes, structural/motility proteins, cell signaling proteins, defense/growth proteins, and regulators of transcription and translation. A(1)AR overexpression reversed the majority of gene down-regulation whereas gene induction was generally unaltered. Additionally, genes involved in cell defence, signaling and gene expression were selectively modified by ischemia in transgenic hearts (33 induced, 10 down-regulated), possibly contributing to the protected phenotype. Real-time PCR verified changes in nine selected genes, revealing concordance with array data. Transcription of the A(1)AR gene was also modestly reduced post-ischemia, consistent with impaired functional sensitivity to A(1)AR stimulation Conclusions: Data are presented regarding the early post-ischemic gene profile of intact heart. Reduced A(1)AR transcription is observed which may contribute to poor outcome from ischemia. A(1)AR overexpression selectively modifies post-ischemic gene expression, potentially contributing to ischemic-tolerance. (C) 2003 European Society of Cardiology. Published by Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human C5a is a plasma protein with potent chemoattractant and pro-inflammatory properties, and its overexpression correlates with severity of inflammatory diseases. C5a binds to its G protein-coupled receptor (C5aR) on polymorphonuclear leukocytes (PMNLs) through a high-affinity helical bundle and a low-affinity C terminus, the latter being solely responsible for receptor activation. Potent and selective C5a antagonists are predicted to be effective anti-inflammatory drugs, but no pharmacophore for small molecule antagonists has yet been developed, and it would significantly aid drug design. We have hypothesized that a turn conformation is important for activity of the C terminus of C5a and herein report small cyclic peptides that are stable turn mimics with potent antagonism at C5aR on human PMNLs. A comparison of solution structures for the C terminus of C5a, small acyclic peptide ligands, and cyclic antagonists supports the importance of a turn for receptor binding. Competition between a cyclic antagonist and either C5a or an acyclic agonist for C5aR on PMNLs supports a common or overlapping binding site on the C5aR. Structure-activity relationships for 60 cyclic analogs were evaluated by competitive radioligand binding with C5a (affinity) and myeloperoxidase release (antagonist potency) from human PMNLs, with 20 compounds having high antagonist potencies (IC50, 20 nM(-1) muM). Computer modeling comparisons reveal that potent antagonists share a common cyclic backbone shape, with affinity-determining side chains of defined volume projecting from the cyclic scaffold. These results define a new pharmacophore for C5a antagonist development and advance our understanding of ligand recognition and receptor activation of this G protein-coupled receptor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ischaemia-reperfusion and toxic injury are leading causes of acute renal failure (ARF). Both of these injury initiators use secondary mediators of damage in oxygen-derived free radicals. Several recent publications about ischaemia-reperfusion and toxin-induced ARF have indicated that plasma membrane structures called caveolae, and their proteins, the caveolins, are potential participants in protecting or repairing renal tissues. Caveolae and caveolins have previously been ascribed many functions, a number of which may mediate cell death or survival of injured renal cells. This review proposes possible pathophysiological mechanisms by which altered caveolin-1 expression and localization may affect renal cell survival following oxidative stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The kidneys exhibit age-associated deterioration in function via a loss of 20% to 25% kidney mass, particularly from the renal cortex and increased fibrosis. Oxidative stress has been found to mediate age-associated renal cell injury and cell death, particularly apoptosis. Oxidative stress results from an imbalance between the levels of free radicals generated during aerobic metabolism, inflammation, and infection and the safe breakdown of these species by endogenous and exogenous scavengers. Other factors may influence these pathologies. For example, growth hormone and caloric restriction have been shown to influence life span, although neither method of prolonging life is likely to find general acceptance in humans. Some genetic knockout models offer promise; for example, knockout of the p66 isoform of the Shc gene in mice increases life span by 30%, but appetite, size, and fertility are retained. Whether the increase in life span is via increased kidney health is not yet clear, but decreasing the age-related renal pathologies will no doubt aid in increasing life span and health in general. This review looks at the role and modulation of factors that influence life span, in particular modulation of oxidative stress, with particular relevance to age-related renal pathologies. (C) 2005 by the National Kidney Foundation, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have previously shown that complement factor 5a(C5a) plays a role in the pathogenesis of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats by using the selective, orally active C5a antagonist AcF-[OP(D-Cha) WR]. This study tested the efficacy and potency of a new C5a antagonist, hydrocinnamate (HC)-[OP(D-Cha) WR], which has limited intestinal lumenal metabolism, in this model of colitis. Analogs of AcF-[OP(D-Cha) WR] were examined for their susceptibility to alimentary metabolism in the rat using intestinal mucosal washings. One metabolically stable analog, HC-[OP(D-Cha)WR], was then evaluated pharmacokinetically and investigated at a range of doses (0.03 - 10 mg/kg/ day p.o.) in the 8-day rat TNBS- colitis model, against the comparator drug AcF-[OP(D-Cha) WR]. Using various amino acid substitutions, it was determined that the AcF moiety of AcF-[OP(D-Cha) WR] was responsible for the metabolic instability of the compound in intestinal mucosal washings. The analog HC-[OP( D-Cha) WR], equiactive in vitro to AcF-[OP(D-Cha) WR], was resistant to intestinal metabolism, but it displayed similar oral bioavailability to AcF-[OP(D-Cha) WR]. However, in the rat TNBS- colitis model, HC-[OP(D-Cha) WR] was effective at reducing mortality, colon edema, colon macroscopic scores, and increasing food consumption and body weights, at 10- to 30- fold lower oral doses than AcF-[OP( D-Cha) WR]. These studies suggest that resistance to intestinal metabolism by HC-[OP(D-Cha) WR] may result in increased local concentrations of the drug in the colon, thus affording efficacy with markedly lower oral doses than AcF-[OP(D-Cha) WR] against TNBS-colitis. This large increase in potency and high efficacy of this compound makes it a potential candidate for clinical development against intestinal diseases such as inflammatory bowel disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complement system is an innate immune defense mechanism that protects the host from infection and injury. Complement activation results in the formation of anaphylatoxins, including the biologically active protein C5a. This anaphylatoxin is a potent chemotactic agent for immune and inflammatory cells and induces cell activation. In situations of excessive or uncontrolled complement activation, the overproduction of C5a can cause deleterious effects to the host, and this process is implicated in the pathogenesis of numerous immunoinflammatory disease states, including rheumatoid arthritis, psoriasis, inflammatory bowel disease, ischemia-reperfusion injuries and others. The presence of C5a in a wide variety of condition's has prompted many groups to examine the potential of inhibiting this complement activation product, with the aim of controlling these diseases and reducing the pathologic process. However, to date there is no clinically available specific C5a inhibitor and development of this new drug class is still in a relatively early stage, although limited phase I and phase II human clinical trials have been undertaken in the last few years with selected agents. In this review, examination of the current evidence supporting a specific role of C5a in selected disease states and an overview of potential therapeutic C5a inhibitors will enable the critical evaluation of the potential for C5a as a therapeutic target.