960 resultados para Intestine crypt
Resumo:
Differing from the studied Eutheria the white belly opossum Peyer"s patches do not present a conspicous dome. M cells are located in the inmer layer of bilaminal invaginations formed at the bottom of the villi. A great variation in the morphology of M cells was observed. The enterocytes located at the epithelial inner layer may present endocytic vesicles, and the microvilli are shorter tha the microvilli of enterocytes lining the small intestine. As these morphological aspects have been described to exist in the enterocytes of the lancet opossum small intstine it was surmised that the opossum Peyer's patches special epithelium could represent the persistence in adult animals of a cellular pattern established before the intestinal maturation had occurred.
Resumo:
The harmful dinoflagellate Prorocentrum minimum has different effects upon various species of grazing bivalves, and these effects also vary with life-history stage. Possible effects of this dinoflagellate upon mussels have not been reported; therefore, experiments exposing adult blue mussels, Mytilus edulis, to P. minimum were conducted. Mussels were exposed to cultures of toxic P. minimum or benign Rhodomonas sp. in glass aquaria. After a short period of acclimation, samples were collected on day 0 (before the exposure) and after 3, 6, and 9 days of continuous-exposure experiment. Hemolymph was extracted for flow-cytometric analyses of hemocyte, immune-response functions, and soft tissues were excised for histopathology. Mussels responded to P. minimum exposure with diapedesis of hemocytes into the intestine, presumably to isolate P. minimum cells within the gut, thereby minimizing damage to other tissues. This immune response appeared to have been sustained throughout the 9-day exposure period, as circulating hemocytes retained hematological and functional properties. Bacteria proliferated in the intestines of the P. minimum-exposed mussels. Hemocytes within the intestine appeared to be either overwhelmed by the large number of bacteria or fully occupied in the encapsulating response to P. minimum cells; when hemocytes reached the intestine lumina, they underwent apoptosis and bacterial degradation. This experiment demonstrated that M. edulis is affected by ingestion of toxic P. minimum; however, the specific responses observed in the blue mussel differed from those reported for other bivalve species. This finding highlights the need to study effects of HABs on different bivalve species, rather than inferring that results from one species reflect the exposure responses of all bivalves.
Resumo:
A new genus, Travassosnema (Guyanemidae, Dracunculoidea) is proposed to include filariid worms having esophagus divided into muscular and glandular parts, with esophageal appendix near junction with intestine; anus functional; vulva anterior, well developed and functional in mature females. Travassonema travassosi sp. n., a parasite of Acestrorhynchus lacustris Reinhardt, 1874 from Três Marias Reservoir (São Francisco River) in the State of Minas Gerais, Brazil, is described. The generic and the specific names are a tribure to Brazilian parasitologist Lauro Travassos at his birth centenary.
Resumo:
Catadiscus pomaceae sp. n. from the intestine of the prosobranch mollusc Pomacea canaliculata (Lamarck, 1801), is described. The host snail was collected from a lenitic biotope belonging to the Riachuelo basin (Corrientes province, Argentina) during 1985-1986. So far the species of the genus Catadiscus Cohn, 1904 have been recorded in amphibians and reptiles. This is the first instance of a species of that genus parasitizing a mollusc.
Resumo:
BACKGROUND: Humanized murine models comprise a new tool to analyze novel therapeutic strategies for allergic diseases of the intestine.¦OBJECTIVE: In this study we developed a human PBMC-engrafted murine model of allergen-driven gut inflammation and analyzed the underlying immunologic mechanisms.¦METHODS: Nonobese diabetic (NOD)-scid-γc(-/-) mice were injected intraperitoneally with human PBMCs from allergic donors together with the respective allergen or not. Three weeks later, mice were challenged with the allergen orally or rectally, and gut inflammation was monitored with a high-resolution video miniendoscopic system, as well as histologically.¦RESULTS: Using the aeroallergens birch or grass pollen as model allergens and, for some donors, also hazelnut allergen, we show that allergen-specific human IgE in murine sera and allergen-specific proliferation and cytokine production of human CD4(+) T cells recovered from spleens after 3 weeks could only be measured in mice treated with PBMCs plus allergen. Importantly, these mice had the highest endoscopic scores evaluating translucent structure, granularity, fibrin, vascularity, and stool after oral or rectal allergen challenge and a strong histologic inflammation of the colon. Analyzing the underlying mechanisms, we demonstrate that allergen-associated colitis was dependent on IgE, human IgE receptor-expressing effector cells, and the mediators histamine and platelet-activating factor.¦CONCLUSION: These results demonstrate that allergic gut inflammation can be induced in human PBMC-engrafted mice, allowing the investigation of pathophysiologic mechanisms of allergic diseases of the intestine and evaluation of therapeutic interventions.
Resumo:
Pseudocapillaria (Ichthyicapillaria) maricaensis n. sp. is described from the small intestine of the lizard, Liolaemus lutzae Meterns, 1938, collected in the State of Rio de Janeiro Brazil. The author compares the new species with Capillaria crotaliRudolphi, 1819) Travassos, 1915, Capillaria freitaslenti Araujo & Gandra, 1941, Pseudocapillaria (Pseudocapillaria) amarali (Freitas & Lent, 1934) Moravec, 1952, Pseudocapillaria (Pseudocapillaria) cezarpintoi (Freitas & Lent, 1934)Moravec, 1952 and Pseudocapillaria (Ichthyocapillaria) murinae (travassos, 1914) Moravec, 1952 previously reported from lizards in Brazil. The nematode Thelandros sceleratus Travassos, 1923 and the trematode paradistomum parvissimum (Travassos, 1918) Travassos, 1919 are for the first time reported from this same host.
Resumo:
Glucose is absorbed through the intestine by a transepithelial transport system initiated at the apical membrane by the cotransporter SGLT-1; intracellular glucose is then assumed to diffuse across the basolateral membrane through GLUT2. Here, we evaluated the impact of GLUT2 gene inactivation on this transepithelial transport process. We report that the kinetics of transepithelial glucose transport, as assessed in oral glucose tolerance tests, was identical in the presence or absence of GLUT2; that the transport was transcellular because it could be inhibited by the SGLT-1 inhibitor phlorizin, and that it could not be explained by overexpression of another known glucose transporter. By using an isolated intestine perfusion system, we demonstrated that the rate of transepithelial transport was similar in control and GLUT2(-/-) intestine and that it was increased to the same extent by cAMP in both situations. However, in the absence, but not in the presence, of GLUT2, the transport was inhibited dose-dependently by the glucose-6-phosphate translocase inhibitor S4048. Furthermore, whereas transport of [(14)C]glucose proceeded with the same kinetics in control and GLUT2(-/-) intestine, [(14)C]3-O-methylglucose was transported in intestine of control but not of mutant mice. Together our data demonstrate the existence of a transepithelial glucose transport system in GLUT2(-/-) intestine that requires glucose phosphorylation and transfer of glucose-6-phosphate into the endoplasmic reticulum. Glucose may then be released out of the cells by a membrane traffic-based pathway similar to the one we previously described in GLUT2-null hepatocytes.
Resumo:
Macvicaria crassigula (Linton, 1910) (Opecoelidae) is referred from the intestine of Micropogonias furnieri and from Stellifer rastrifer; and from Stellifer rastrifer, and Saturnius maurepasi Overstreet, 1977 (Bunocotylidae) from the stomach of Mugil liza. This is the first report of these species in Brazil, and a new host records are presented.
Resumo:
A new nematode genus and species. Neoparaseuratum travassosi n. g., n. sp., is described from the intestine of the freshwater thorny catfish, Pterodoras granulosus (Valenciennes), from the Paraná River, Brazil. This seuratoid nematode species represents a new genus of the family Quimperiidae, being characterized mainly by the presence of numerous narrow longitudinal bands of inflated cuticle extending along the cephalic region of the body, small deirids, postoesophageal position of the excretory pore, relatively short (0.159-0.303 mm), equal spicules and a gubernaculum, the absence of caudal alae and preanal sucker in the male, and by some other features.
Resumo:
The evaluation of the role of rodents as natural hosts of Schistosoma mansoni was studied at the Pamparrão Valley, Sumidouro, RJ, with monthly captures and examination of the animals. Twenty-three Nectomys squamipes and 9 Akodom arviculoides with a shistosomal infection rate of 56.5% and 22.2% respectively eliminated a great majority of viable eggs. With a strain isolated from one of the naturally infected N. squamipes, we infected 75% of simpatric Biomphalaria glabrata and 100% of albino Mus musculus mice. The adult worms, isolated from N. squamipes after perfusion were located mainly in the liver (91.5%) and the mesenteric veins (8.5%). The male/female proportion was 2:1. The eggs were distributed on small intestine segments (proximal, medial and distal portions) and the large intestine without any significant differences in egg concentration of these segments. In A. arviculoides, the few eggs eliminated by the stools were viable and there was litlle egg retention on intestinal segments. Considering the ease to complete S. mansoni biological cycle in the Nectomys/Biomphalaria/Nectomys system under laboratory conditions, probably the same is likely to occur in natural conditions. In support to this hypotesis there are also the facts that human mansonic shistosomiasis has a very low prevalence in Sumidouro and endemicity among the rodents has not changed even after repetead treatments of the local patients. Based on our experiments, we conclude that N. squamipes has become a natural host of S. mansoni and possibly may participate in keeping the cycle of schistosomiasis transmission at Pamparrão Valley.
Resumo:
Twenty specimens of Nectomys squamipes born in captivity, were infected with 500 cercariae by the transcutaneous route. Coprologic examinations were carried out from the 5th to 23rd week after infection. On the 7th, 8th, 12th, 16th, and 23rd weeks the animals were sacrificed and perfused. The oogram was performed in segments of the small intestine (proximal, medial and distal portions) and the large intestine. The average pre-patent period was of 42 days. The average number of eggs varied from 350 on 6th week, to 800 on the 13th. From the 14th week on, the average number of eggs eliminated was lower than 50 per gram of feces. The recovery of worms kept steady on the 7th, 8th, and 12th week (16.85%; 15.45% and 11.95%), decreasing to 7.70% on the 16th week and 8.45% on the 23rd week. The proportion of male/female worms was about the same on the first two weeks, but from the 12th week on, the proportion was: 1,4/1 on the 12th week; 2,5/1 on the 16thweek and 1,8/1 on the 23rd weekThese observations suggest that N. squamipes may used as an experimental model for schistosomiasis mansoni, to wich it develops resistance mechanism, useful for immunity studies.
Resumo:
Abstract: The increasingly high hygienic standards characterizing westernized societies correlate with an increasingly high prevalence of allergic disease. Initially based on these observations, the hygiene hypothesis postulates that reduced microbial stimulation during infancy impairs the immune system development and increases the risk of allergy. Moreover, there is increasing evidence that the crosstalk existing between the intestine and the resident microbiota is crucial for gut homeostasis. In particular, bacterial colonization of the gut affects the integrity of the gut barrier and stimulates the development of the gut associated immune tissue, both phenomena being essential for the immune system to mount a controlled response to food antigens. Therefore, alterations in the microbial colonization process, by compromising the barrier homeostasis, may increase the risk of food allergy. In this context, antibiotic treatment, frequently prescribed during infancy, affects gut colonization by bacteria. However, little is known about the impact of alterations in the colonization process on the maturation of the gut barrier and on the immunological response to oral antigens. The objective of this work was to determine the impact of a commercial antibiotic preparation employed in pediatric settings on the gut barrier status at the critical period of the suckling/weaning transition and to evaluate the physiological consequences of this treatment in terms of immune response to food antigens. We established an antibiotic-treated suckling rat model relevant to the pediatric population in terms of type, dose and route of administration of the antibiotic and of changes in the patterns of microbial colonization. Oral tolerance to a novel luminal antigen (ovalbumin) was impaired when the antigen was introduced during antibiotic treatment. These results paralleled to alterations in the intestinal permeability to macromolecules and reduced intestinal expression of genes coding for the major histocomptatibility complex II molecules, which suggest a reduced capacity of antigen handling and presentation in the intestine of the antibiotic-treated animals. In addition, low luminal IgA levels and reduced intestinal expression of genes coding for antimicrobial proteins suggest that protection against pathogens was reduced under antibiotic treatment. In conclusion, we observed in suckling rats that treatment with abroad-spectrum antibiotic commonly used in pediatric practices reduced the capacity of the immune system to develop tolerance. The impact of the antibiotic treatment on the immune response to the antigen-was likely mediated by the alterations of the gut microbiota, through impairment in the mechanisms of antigen handling and presentation. This work reinforces the body of data supporting a key role of the intestinal microbiota modulating the risk of allergy development and leads us to propose that the introduction of new food antigens should be avoided during antibiotic treatment in infants. Résumé: L'augmentation du niveau d'hygiène caractérisant les sociétés occidentales semble être fortement corrélée avec l'augmentation des cas d'allergie dans ces pays. De cette observation est née l'hypothèse qu'une diminution des stimuli microbiens pendant l'enfance modifie le développement du système immunitaire augmentant ainsi le risque d'allergie. En ce sens, un nombre croissant de données indiquent que les interactions existant entre l'intestin et les bactéries résidantes sont cruciales pour l'équilibre du système. En effet, la présence de bactéries dans l'intestin affecte l'intégrité de sa fonction de barrière et stimule le développement du système immunitaire intestinal. Ces deux paramètres étant essentiels à la mise en place d'une réponse contrôlée vis à vis d'un antigène reçu oralement, toute modification du processus naturel de colonisation compromettant l'équilibre intestinal pourrait augmenter le risque d'allergie. Les traitements aux antibiotiques, fréquemment prescrits en pédiatrie, modifient de façon conséquente le processus de colonisation bactérienne. Cependant peu de données existent concernant l'impact d'une altération du processus de colonisation sur la maturation de la barrière intestinale et de la réponse immunitaire dirigée contre un antigène. L'objectif de ce travail était de déterminer l'impact d'un antibiotique commercial et employé en pédiatrie sur l'état de la barrière intestinale au moment critique du sevrage et d'évaluer les conséquences physiologiques d'un tel traitement sur la réponse immune à un antigène alimentaire. Nous avons mis en place un modèle de rats allaités, traités à l'antibiotique, le plus proche possible des pratiques pédiatriques, en terme de nature, dose et voie d'administration de l'antibiotique. Nous avons constaté que l'établissement de la tolérance orale à un nouvel antigène (l'ovalbumine) est altéré quand celui-ci est donné pour la première fois au cours du traitement antibiotique. Ces résultats coïncident avec une diminution de la perméabilité intestinale aux macromolécules, ainsi qu'avec une diminution de l'expression des gènes codant pour les molécules du complexe majeur d'histocomptatibilité de classe II, suggérant une modification de l'apprêtement et de la présentation de l'antigène au niveau intestinal chez les rats traités à l'antibiotique. De plus, un faible taux d'IgA et une diminution de l'expression des gènes codant pour des protéines antimicrobiennes, observés après l'administration d'antibiotique, laissent à penser que la protection contre un pathogène est diminuée lors d'un traitement antibiotique. En conclusion, nous avons observé qu'un traitement antibiotique à large spectre d'activité, couramment utilisé en pédiatrie, réduit la capacité d'induction de la tolérance orale chez le rat allaité. L'impact du traitement antibiotique sur la réponse immune semble induite par l'altération de la flore intestinale via son effet sur les mécanismes d'apprêtement et de présentation de l'antigène. Ce travail renforce l'ensemble des données existantes qui accorde à la flore intestinale un rôle clef dans la modulation du risque de développement d'allergie et nous amène à recommander d'éviter l'introduction d'un nouvel aliment lorsqu'un enfant est traité aux antibiotiques.
Resumo:
Pseudotelorchis caimanis n. sp. and P. yacarei n. sp. are described based on specimens collected from Caiman crocodilus yacare (Daudin) in the Pantanal Mato-grossense, Brazil. This is the first record of any species of Telorchiidae Stunkard, 1924, parasitizing crocodilians. Pseudotelorchis caimanis n. sp. differs from P. comapactus, the only species described in the genus with seminal receptacle, testes in tandem, and genital pore lateral to acetabulum. Pseudotelorchis yacarei n. sp. differs from the two other species for its body shape, for infecting the intestine instead of the uterus, by having regularly disposed instead of irregulary disposed uterine loops, and by having the vitelline glands disposed in longitudinal lateral lines instead of in lateral bunches.
Resumo:
Barrett's esophagus (BE) is an acquired condition in which the normal lining of the esophagus is replaced by intestinal metaplastic epithelium. BE can evolve to esophageal adenocarcinoma (EAC) through low-grade dysplasia (LGD) and high-grade dysplasia (HGD). The only generally accepted marker for increased risk of EAC is the presence of HGD, diagnosed on endoscopic biopsies. More specific markers for the prediction of EAC risk are needed. A tissue microarray was constructed comprising tissue samples from BE, LGD, HGD, and EAC. Marker expression was studied by immunohistochemistry using antibodies against CD44, DKK1, CDX2, COX2, SOX9, OCT1, E-cadherin, and beta-catenin. Immunostaining was evaluated semi-quantitatively. CD44 expression decreased in HGD and EAC relative to BE and LGD. DKK1 expression increased in HGD and EAC relative to BE and LDG. CDX2 expression increased in HGD but decreased in EAC. COX2 expression decreased in EAC, and SOX9 expression increased only in the upper crypt epithelial cells in HGD. E-cadherin expression decreased in EAC. Nuclear beta-catenin was not significantly different between BE, LGD, and HGD. Loss of CD44 and gain of DKK1 expression characterizes progression from BE and LGD to HGD and EAC, and their altered expression might indicate an increased risk for developing an EAC. This observation warrants inclusion of these immunohistochemically detectable markers in a study with a long patient follow-up.
Resumo:
Viral replication, histopathological and ultrastructural changes were observed for a period of nine days in the small intestine of suckling mice infected with a simian rotavirus (SA11). Samples taken from duodenum, jejunun and ileum were prepared for light microscopy, transmission and scanning electron microscopy analysis. Histopathologic effect could be detected within 8 hr post-infection, when only a few altered cells were observed. Damage was extensive after 16 hr post-infection, showing swollen enterocytes and reduced and irregularly oriented microvilli at intestinal villi tips. Virus particles were detected at 16 and 48 hr post-infection, budding from the viroplasm into the rough endoplasmic reticulum cisternae in ileum enterocytes. Clear evidence of viral replication, observed by electron microscopy was not described before in heterologous murine models. Regeneration of the intestinal villi began at the third day post-infection. Despite some differences observed in clinical symptoms and microscopic analysis of homologous and heterologous rotavirus infections, we concluded that mechanisms of heterologous rotavirus infection in mice follow similar patterns to those observed in the homologous models.