928 resultados para Internal locus of control
Resumo:
Resumo:
MEDEIROS, Adelardo A. D.A survey of control architectures for autonomous mobile robots. J. Braz. Comp. Soc., Campinas, v. 4, n. 3, abr. 1998 .Disponível em:
Resumo:
Indoor and outdoor concentrations of various pollutants were measured in a naturally ventilated building in the West End of Edinburgh during and after the period of the Commonwealth Heads of Government Meeting (CHOGM) to assess the effect upon indoor pollution levels of the closure of some streets in the city. The relationships between indoor and outdoor air qualities in respect of traffic-generated pollutants were studied and the building’s relative attenuation of external pollution levels investigated. The peak concentrations of some of the external pollutants were attenuated by the building and the internal concentrations showed a reduction of up to 30% in some periods. During periods of reduced traffic, the early analyses indicate that the daily mean concentrations of the pollutants were not significantly different from those measured at other times.
Resumo:
Mode of access: Internet.
Resumo:
In the context of active control of rotating machines, standard optimal controller methods enable a trade-off to be made between (weighted) mean-square vibrations and (weighted) mean-square currents injected into magnetic bearings. One shortcoming of such controllers is that no concern is devoted to the voltages required. In practice, the voltage available imposes a strict limitation on the maximum possible rate of change of control force (force slew rate). This paper removes the aforementioned existing shortcomings of traditional optimal control.
Resumo:
The objective of this work was to evaluate the internal temperature (IT) of Girolando heifers in integrated crop, livestock (ICLS) and forestry (ICLFS) systems. Trial was carried out at experimental field of Embrapa Rondônia, Porto Velho, Rondônia, Brazil.
Resumo:
Implementation of stable aeroelastic models with the ability to capture the complex features of Multi concept smartblades is a prime step in reducing the uncertainties that come along with blade dynamics. The numerical simulations of fluid structure interaction can thus be used to test a realistic scenarios comprising of full-scale blades at a reasonably low computational cost. A code which was a combination of two advanced numerical models was designed and was run with the help of paralell HPC supercomputer platform. The first model was based on a variation of dimensional reduction technique proposed by Hodges and Yu. This model was the one to record the structural response of heterogenous composite blades. This technique reduces the geometrical complexities of the heterogenous blade section into a stiffness matrix for an equivalent beam. This derived equivalent 1-D strain energy matrix is similar to the actual 3-D strain energy matrix in an asymptotic sense. As this 1-D matrix helps in accurately modeling the blade structure as a 1-D finite element problem, this substantially redues the computational effort and subsequently the computational cost that are required to model the structural dynamics at each step. Second model comprises of implementation of the Blade Element Momentum Theory. In this approach we map all the velocities and the forces with the help of orthogonal matrices that help in capturing the large deformations and the effects of rotations in calculating the aerodynamic forces. This ultimately helps us to take into account the complex flexo torsional deformations. In this thesis we have succesfully tested these computayinal tools developed by MTU’s research team lead by for the aero elastic analysis of wind-turbine blades. The validation in this thesis is majorly based on several experiments done on NREL-5MW blade, as this is widely accepted as a benchmark blade in the wind industry. Along with the use of this innovative model the internal blade structure was also changed to add up to the existing benefits of the already advanced numerical models.
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
Background: It has been argued that the alcohol industry uses corporate social responsibility activities to influence policy and undermine public health, and that every opportunity should be taken to scrutinise such activities. This study analyses a controversial Diageo-funded ‘responsible drinking’ campaign (“Stop out of Control Drinking”, or SOOCD) in Ireland. The study aims to identify how the campaign and its advisory board members frame and define (i) alcohol-related harms, and their causes, and (ii) possible solutions. Methods: Documentary analysis of SOOCD campaign material. This includes newspaper articles (n = 9), media interviews (n = 11), Facebook posts (n = 92), and Tweets (n = 340) produced by the campaign and by board members. All material was coded inductively, and a thematic analysis undertaken, with codes aggregated into sub-themes. Results: The SOOCD campaign utilises vague or self-defined concepts of ‘out of control’ and ‘moderate’ drinking, tending to present alcohol problems as behavioural rather than health issues. These are also unquantified with respect to actual drinking levels. It emphasises alcohol-related antisocial behaviour among young people, particularly young women. In discussing solutions to alcohol-related problems, it focuses on public opinion rather than on scientific evidence, and on educational approaches and information provision, misrepresenting these as effective. “Moderate drinking” is presented as a behavioural issue (“negative drinking behaviours”), rather than as a health issue. Conclusions: The ‘Stop Out of Control Drinking’ campaign frames alcohol problems and solutions in ways unfavourable to public health, and closely reflects other Diageo Corporate Social Responsibility (CSR) activity, as well as alcohol and tobacco industry strategies more generally. This framing, and in particular the framing of alcohol harms as a behavioural issue, with the implication that consumption should be guided only by self-defined limits, may not have been recognised by all board members. It suggests a need for awareness-raising efforts among the public, third sector and policymakers about alcohol industry strategies
Resumo:
Entrepreneurship education has emerged as one popular research domain in academic fields given its aim at enhancing and developing certain entrepreneurial qualities of undergraduates that change their state of behavior, even their entrepreneurial inclination and finally may result in the formation of new businesses as well as new job opportunities. This study attempts to investigate the Colombian student´s entrepreneurial qualities and the influence of entrepreneurial education during their studies.
Resumo:
In recent years, polymerization processes assisted by atmospheric pressure plasma jets (APPJs) have received increasing attention in numerous industrially relevant sectors since they allow to coat complex 3D substrates without requiring expensive vacuum systems. Therefore, advancing the comprehension of these processes has become a high priority topic of research. This PhD dissertation is focused on the study and the implementation of control strategies for a polymerization process assisted by an atmospheric pressure single electrode plasma jet. In the first section, a study of the validity of the Yasuda parameter (W/FM) as controlling parameter in the polymerization process assisted by the plasma jet and an aerosolized fluorinated silane precursor is proposed. The surface characterization of coatings deposited under different W/FM values reveals the presence of two very well-known deposition domains, thus suggesting the validity of W/FM as controlling parameter. In addition, the key role of the Yasuda parameter in the process is further demonstrated since coatings deposited under the same W/FM exhibit similar properties, regardless of how W/FM is obtained. In the second section, the development of a methodology for measuring the energy of reactions in the polymerization process assisted by the plasma jet and vaporized hexamethyldisiloxane is presented. The values of energy per precursor molecule are calculated through the identification and resolution of a proper equivalent electrical circuit. To validate the methodology, these energy values are correlated to the bond energies in the precursor molecule and to the properties of deposited thin films. It is shown that the precursor fragmentation in the discharge and the coating characteristics can be successfully explained according to the obtained values of energy per molecule. Through a detailed discussion of the limits and the potentialities of both the control strategies, this dissertation provides useful insights into the control of polymerization processes assisted by APPJs.
Resumo:
Globular clusters (GCs) are traditionally described as simple quasi-relaxed non-rotating stellar systems, characterized by spherical symmetry and isotropy in velocity space. However, recent studies have shown deviations from isotropic velocity distributions and significant internal rotation in many GCs, suggesting that their internal structure and kinematics are more complex than previously thought. The aim of this thesis is to investigate the internal kinematics of Galactic Globular Clusters (GGCs) as part of the Multi-Instrument Kinematic Survey (MIKiS), which exploits the capabilities of different ESO-VLT spectrographs to obtain comprehensive velocity dispersion (VD) and rotation profiles of GGCs. Moreover, this thesis has the particular goal of unraveling the kinematics of GC cores, which are still largely unexplored, by taking advantage of the exceptional spatial resolution of the adaptive-optics assisted integral-field spectrograph MUSE/NFM. The thesis presents a thorough kinematic study of three GGCs NGC 1904, NGC 6440, and NGC 6569. By combining the data sets acquired with four different spectrographs, we obtained the radial velocity (RV) of more than 1000 individual stars in each cluster, sampling from the innermost to the outermost regions. This allowed us to obtain the entire VD profile of each cluster and exclude the presence of an intermediate-mass black hole in the core of NGC 1904, at odds with previous findings obtained from integrated-light spectra. The studies also revealed signatures of internal rotation in each of the GCs studied. These results, supported by those of N-body simulations, prove that GCs were born with a significant initial rotation that they gradually lost through internal two-body relaxation and angular momentum loss carried away by escaping stars. Furthermore, we derived the structural parameters of NGC 6440 and NGC 6569, obtaining a comprehensive overview of the internal kinematics and structure of these GCs, which is necessary to properly reconstruct the evolutionary history of these systems.