977 resultados para Integrable equations in Physics
Resumo:
The Thermodynamic Bethe Ansatz analysis is carried out for the extended-CP^N class of integrable 2-dimensional Non-Linear Sigma Models related to the low energy limit of the AdS_4xCP^3 type IIA superstring theory. The principal aim of this program is to obtain further non-perturbative consistency check to the S-matrix proposed to describe the scattering processes between the fundamental excitations of the theory by analyzing the structure of the Renormalization Group flow. As a noteworthy byproduct we eventually obtain a novel class of TBA models which fits in the known classification but with several important differences. The TBA framework allows the evaluation of some exact quantities related to the conformal UV limit of the model: effective central charge, conformal dimension of the perturbing operator and field content of the underlying CFT. The knowledge of this physical quantities has led to the possibility of conjecturing a perturbed CFT realization of the integrable models in terms of coset Kac-Moody CFT. The set of numerical tools and programs developed ad hoc to solve the problem at hand is also discussed in some detail with references to the code.
Resumo:
After briefly discuss the natural homogeneous Lie group structure induced by Kolmogorov equations in chapter one, we define an intrinsic version of Taylor polynomials and Holder spaces in chapter two. We also compare our definition with others yet known in literature. In chapter three we prove an analogue of Taylor formula, that is an estimate of the remainder in terms of the homogeneous metric.
Resumo:
Zusammenfassung In der vorliegenden Arbeit besch¨aftige ich mich mit Differentialgleichungen von Feynman– Integralen. Ein Feynman–Integral h¨angt von einem Dimensionsparameter D ab und kann f¨ur ganzzahlige Dimension als projektives Integral dargestellt werden. Dies ist die sogenannte Feynman–Parameter Darstellung. In Abh¨angigkeit der Dimension kann ein solches Integral divergieren. Als Funktion in D erh¨alt man eine meromorphe Funktion auf ganz C. Ein divergentes Integral kann also durch eine Laurent–Reihe ersetzt werden und dessen Koeffizienten r¨ucken in das Zentrum des Interesses. Diese Vorgehensweise wird als dimensionale Regularisierung bezeichnet. Alle Terme einer solchen Laurent–Reihe eines Feynman–Integrals sind Perioden im Sinne von Kontsevich und Zagier. Ich beschreibe eine neue Methode zur Berechnung von Differentialgleichungen von Feynman– Integralen. ¨ Ublicherweise verwendet man hierzu die sogenannten ”integration by parts” (IBP)– Identit¨aten. Die neue Methode verwendet die Theorie der Picard–Fuchs–Differentialgleichungen. Im Falle projektiver oder quasi–projektiver Variet¨aten basiert die Berechnung einer solchen Differentialgleichung auf der sogenannten Griffiths–Dwork–Reduktion. Zun¨achst beschreibe ich die Methode f¨ur feste, ganzzahlige Dimension. Nach geeigneter Verschiebung der Dimension erh¨alt man direkt eine Periode und somit eine Picard–Fuchs–Differentialgleichung. Diese ist inhomogen, da das Integrationsgebiet einen Rand besitzt und daher nur einen relativen Zykel darstellt. Mit Hilfe von dimensionalen Rekurrenzrelationen, die auf Tarasov zur¨uckgehen, kann in einem zweiten Schritt die L¨osung in der urspr¨unglichen Dimension bestimmt werden. Ich beschreibe außerdem eine Methode, die auf der Griffiths–Dwork–Reduktion basiert, um die Differentialgleichung direkt f¨ur beliebige Dimension zu berechnen. Diese Methode ist allgemein g¨ultig und erspart Dimensionswechsel. Ein Erfolg der Methode h¨angt von der M¨oglichkeit ab, große Systeme von linearen Gleichungen zu l¨osen. Ich gebe Beispiele von Integralen von Graphen mit zwei und drei Schleifen. Tarasov gibt eine Basis von Integralen an, die Graphen mit zwei Schleifen und zwei externen Kanten bestimmen. Ich bestimme Differentialgleichungen der Integrale dieser Basis. Als wichtigstes Beispiel berechne ich die Differentialgleichung des sogenannten Sunrise–Graphen mit zwei Schleifen im allgemeinen Fall beliebiger Massen. Diese ist f¨ur spezielle Werte von D eine inhomogene Picard–Fuchs–Gleichung einer Familie elliptischer Kurven. Der Sunrise–Graph ist besonders interessant, weil eine analytische L¨osung erst mit dieser Methode gefunden werden konnte, und weil dies der einfachste Graph ist, dessen Master–Integrale nicht durch Polylogarithmen gegeben sind. Ich gebe außerdem ein Beispiel eines Graphen mit drei Schleifen. Hier taucht die Picard–Fuchs–Gleichung einer Familie von K3–Fl¨achen auf.
Resumo:
Coarse graining is a popular technique used in physics to speed up the computer simulation of molecular fluids. An essential part of this technique is a method that solves the inverse problem of determining the interaction potential or its parameters from the given structural data. Due to discrepancies between model and reality, the potential is not unique, such that stability of such method and its convergence to a meaningful solution are issues.rnrnIn this work, we investigate empirically whether coarse graining can be improved by applying the theory of inverse problems from applied mathematics. In particular, we use the singular value analysis to reveal the weak interaction parameters, that have a negligible influence on the structure of the fluid and which cause non-uniqueness of the solution. Further, we apply a regularizing Levenberg-Marquardt method, which is stable against the mentioned discrepancies. Then, we compare it to the existing physical methods - the Iterative Boltzmann Inversion and the Inverse Monte Carlo method, which are fast and well adapted to the problem, but sometimes have convergence problems.rnrnFrom analysis of the Iterative Boltzmann Inversion, we elaborate a meaningful approximation of the structure and use it to derive a modification of the Levenberg-Marquardt method. We engage the latter for reconstruction of the interaction parameters from experimental data for liquid argon and nitrogen. We show that the modified method is stable, convergent and fast. Further, the singular value analysis of the structure and its approximation allows to determine the crucial interaction parameters, that is, to simplify the modeling of interactions. Therefore, our results build a rigorous bridge between the inverse problem from physics and the powerful solution tools from mathematics. rn
Resumo:
The study of dielectric properties concerns storage and dissipation of electric and magnetic energy in materials. Dielectrics are important in order to explain various phenomena in Solid-State Physics and in Physics of Biological Materials. Indeed, during the last two centuries, many scientists have tried to explain and model the dielectric relaxation. Starting from the Kohlrausch model and passing through the ideal Debye one, they arrived at more com- plex models that try to explain the experimentally observed distributions of relaxation times, including the classical (Cole-Cole, Davidson-Cole and Havriliak-Negami) and the more recent ones (Hilfer, Jonscher, Weron, etc.). The purpose of this thesis is to discuss a variety of models carrying out the analysis both in the frequency and in the time domain. Particular attention is devoted to the three classical models, that are studied using a transcendental function known as Mittag-Leffler function. We highlight that one of the most important properties of this function, its complete monotonicity, is an essential property for the physical acceptability and realizability of the models. Lo studio delle proprietà dielettriche riguarda l’immagazzinamento e la dissipazione di energia elettrica e magnetica nei materiali. I dielettrici sono importanti al fine di spiegare vari fenomeni nell’ambito della Fisica dello Stato Solido e della Fisica dei Materiali Biologici. Infatti, durante i due secoli passati, molti scienziati hanno tentato di spiegare e modellizzare il rilassamento dielettrico. A partire dal modello di Kohlrausch e passando attraverso quello ideale di Debye, sono giunti a modelli più complessi che tentano di spiegare la distribuzione osservata sperimentalmente di tempi di rilassamento, tra i quali modelli abbiamo quelli classici (Cole-Cole, Davidson-Cole e Havriliak-Negami) e quelli più recenti (Hilfer, Jonscher, Weron, etc.). L’obiettivo di questa tesi è discutere vari modelli, conducendo l’analisi sia nel dominio delle frequenze sia in quello dei tempi. Particolare attenzione è rivolta ai tre modelli classici, i quali sono studiati utilizzando una funzione trascendente nota come funzione di Mittag-Leffler. Evidenziamo come una delle più importanti proprietà di questa funzione, la sua completa monotonia, è una proprietà essenziale per l’accettabilità fisica e la realizzabilità dei modelli.
Resumo:
In this work a Bianchi type II space-time within the framework of projectable Horava Lifshitz gravity was investigated; the resulting field equations in the infrared limit λ = 1 were analyzed qualitatively. We have found the analytical solutions for a toy model in which only the higher curvature terms cubic in the spatial Ricci tensor are considered. The resulting behavior is still described by a transition among two Kasner epochs, but we have found a different transformation law of the Kasner exponents with respect to the one of Einstein's general relativity.
Resumo:
In climate research the interest on carbonaceous particles has increased over the last years because of their influence on the radiation balance of the earth. Nevertheless, there is a paucity of available data regarding their concentrations and sources in the past. Such data would be important for a better understanding of their effects and for estimating their influence on future climate. Here, a technique is described to extract carbonaceous particles from ice core samples with subsequent separation of the two main constituents into organic carbon (OC) and elemental carbon (EC) for analysis of their concentrations in the past. This is combined with further analysis of OC and EC 14C/12C ratios by accelerator mass spectrometry (AMS), what can be used for source apportionment studies of past emissions. We further present how 14C analysis of the OC fraction could be used in the future to date any ice core extracted from a high-elevation glacier. Described sample preparation steps to final analysis include the combustion of micrograms of water–insoluble carbonaceous particles, primary collected by filtration of melted ice samples, the graphitisation of the obtained CO2 to solid AMS target material and final AMS measurements. Possible fractionation processes were investigated for quality assurance. Procedural blanks were reproducible and resulted in carbon masses of 1.3 ± 0.6 μg OC and 0.3 ± 0.1 μg EC per filter. The determined fraction of modern carbon (fM) for the OC blank was 0.61 ± 0.13. The analysis of processed IAEA-C6 and IAEA-C7 reference material resulted in fM = 1.521 ± 0.011 and δ13C = −10.85 ± 0.19‰, and fM = 0.505 ± 0.011 and δ13C = −14.21 ± 0.19‰, respectively, in agreement with consensus values. Initial carbon contents were thereby recovered with an average yield of 93%.
Resumo:
The maximum principle is an important property of solutions to PDE. Correspondingly, it's of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving(MPP) high order finite volume(FV) WENO scheme, and then propose a new parametrized MPP high order finite difference(FD) WENO framework, which is generalized from the one solving hyperbolic conservation laws. A formal analysis is presented to show that a third order finite difference scheme with this parametrized MPP flux limiters maintains the third order accuracy without extra CFL constraint when the low order monotone flux is chosen appropriately. Numerical tests in both one and two dimensional cases are performed on the simulation of the incompressible Navier-Stokes equations in vorticity stream-function formulation and several other problems to show the effectiveness of the proposed method.