950 resultados para Inorganic scintillator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic-inorganic hybrid materials were prepared from an ureasil precursor (ureapropyltriethoxysilane designated as UPTES) and acrylic acid modified zirconium (IV) n-propoxide. Thin films containing rhodamine 6G (Rh6G) were prepared by spin-coating on glass substrates with different Zr:Si molar ratios (Zr:Si = 75:25, 50:50 and 25:75). Refractive index, thickness, number of propagating modes and attenuation coefficient were measured at 543.5, 632.8 and 1550 nm wavelengths by the prism coupling technique. Distributed feedback (DFB) laser effect was observed and studied as a function of films thickness and refractive index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation and characterization of new Eu3+ doped polyphosphate-aminosilane hybrids xerogels is reported. Eu3+ D-5(0) emission quantum efficiency ranges from 0.41 to 0.54 depending on the SUP ratio. These rather high values are due to the substitution of phosphate and amino groups for water in the Eu3+ coordination shell. Raman and Si-29 and C-13 CP-MAS NMR results suggest that no strong interaction exists between the polyphosphate and the siloxane parts. Not fully condensed siloxane colloidal domains seem to be homogeneously distributed in the polyphosphate network. Good optical quality and favorable Eu3+ spectroscopic characteristics suggest these new hybrids as good hosts for lanthanide ions in optical devices. (C) 2003 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eu3+ -doped titania-silica planar waveguides were prepared from tetraethylorthotitanate (TEOT) and modified silane 3-amino-propyltriethoxysilane (APTS). Films were deposited on borosilicate glass substrates by a dip-coating technique. The refractive index, the thickness and the total attenuation coefficient of the waveguides were measured at 632.8 and 1550 nm by prism coupling technique. Starting from pure titania films, the addition of modified silane leads to a decrease in the refractive index and an increase in thickness. Squared electric field simulation has shown that the light confinement in the waveguide increases with the silane content of the so]. Emission spectra present a broad emission band due to the modified silane and EU emission transitions arising mainly from the D-5(0) level to the F-7(J) (J = 0-4) manifolds. The dependence of transition intensities and excited state lifetimes on the initial composition and also on the heat treatment performed was interpreted in terms of structural changes occurring during the preparation process. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic-inorganic hybrids containing methacrylic acid (McOH, CH(2)= C(CH(3))COOH)) modified zirconium tetrapropoxide, Zr(OPr(n))(4), classed as di-ureasil-zirconium oxo-cluster hybrids, have been prepared and structurally characterized by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), Fourier transform infrared (FT-IR) and Raman (FT-Raman) spectroscopies, Si and C nuclear magnetic resonance (NMR), and atomic force microscopy (AFM). XRD and SAXS results have pointed out the presence of Si- and Zr-based nanobuilding blocks (NBBs) dispersed into the organic phase. Inter-NBBs correlation distances have been estimated for the pure di-ureasil and a model compound obtained. by hydrolysis/condensation of Zr(OPr(n))(4):McOH (molar ratio 1: 1): d(Si) approximate to 26 +/- 1 angstrom and d(Zr) approximate to 16 +/- 1 angstrom, respectively. In the case of the di-ureasil-zirconium oxo-cluster hybrids, these distances depend on the Zr relative molar percentage (rel. mol. Zr %) (d(Si) ranges from 18 to 25 angstrom and d(Zr) from 14 to 23 angstrom, as the rel. mol. Zr % increases from 5 to 75), suggesting that the Si- and Zr-based clusters are interconstrained. Complementary data from FT-IR, FT-Raman, (29)Si and (13)C NMR, and AFM support to a structural model where McOH-modified Zr-based NBBs (Zr-OMc) are present over the whole range of composition. At low Zr-OMc contents (rel. mol. Zr % <30) the clusters are well-dispersed within the di-ureasil host, whereas segregation occurs at the 0.1 mu m scale at high Zr-OMc concentration (rel. mol. Zr % = 50). No Zr-O-Si heterocondensation has been discerned. Monomode waveguides, diffractions gratings, and Fabry-Perot cavities have been written through the exposure of the hybrid monoliths to UV light. FT-Raman has shown that the chemical process that takes place under illumination is the polymerization of the methacrylate groups of the Zr-OMc NBBs. The guidance region in patterned channels is a Gaussian section located below the exposed surface with typical dimensions of 320 mu m wide and 88 mu m deep. The effective refractive index is 1.5162 (maximum index contrast on the order of 1 x 10(-4)) and the reflection coeficient of the Fabry-Perot cavity (formed by a grating patterned into a 0.278 cm channel) is 0.042 with a free spectral range value of 35.6 GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a series of transparent di-ureasil hybrids containing different amounts of methacrylic acid modified zirconium tetrapropoxide (ZrMcOH) nanoclusters (5-85 mol%) and incorporating EuCl3 and [Eu(tta)(3)(H2O)(2)](tta = thenoyltrifluoroacetonate) complex were prepared. These hybrids are multi-wave-length emitters due to the convolution of the host intrinsic emission (electron-hole recombinations occurring in siliceous and urea cross-linkages) Eu3+ intra-4f(6) transitions. The ZrMcOH incorporation deviates the maximum excitation wavelength of the hybrid host intrinsic emission from the UV (365 nm) to the blue (420 nm) and enhances the absolute emission quantum yield from 6.0 +/- 0.6% to 9.0 +/- 0.9%, and contributes to an increase in the D-5(0) lifetime values, quantum efficiency due to a decrease in the non-radiative transition probability and OH groups coordinated to the Eu3+ ions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposites created with polycarboxylic acid alone as a stabilization agent for prenucleation clusters-derived amorphous calcium phosphate exhibit nonperiodic apatite deposition. In the present study, we report the use of inorganic polyphosphate as a biomimetic analog of matrix phosphoprotein for directing poly(acrylic acid)-stabilized amorphous nano-precursor phases to assemble into periodic apatite-collagen nanocomposites. The sorption and desorption characteristics of sodium tripolyphosphate to type I collagen were examined. Periodic nanocomposite assembly with collagen as a template was demonstrated with TEM and SEM using a Portland cement-based resin composite and a phosphate-containing simulated body fluid. Apatite was detected within the collagen at 24 h and became more distinct at 48 h, with prenucleation clusters attaching to the collagen fibril surface during the initial infiltration stage. Apatite-collagen nanocomposites at 72 h were heavily mineralized with periodically arranged intrafibrillar apatite platelets. Defect-containing nanocomposites caused by desorption of TPP from collagen fibrils were observed in regions lacking the inorganic phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic-inorganic hybrids formed by polyether-based chains grafted to both ends to a siliceous backbone through urea cross-linkages (-NHC=O)NH-), named di-ureasil, have been used as host for incorporation of Eu3+ in the form of EuCl3. The bulks and the thin films, both optically transparent, were characterized by excitation, absorption and emission spectroscopy. Photoluminescence results point out that the Eu3+ ions occupy, at least, two distinct local environments. Besides, the processing method (thin films or bulks) has influence on the energy levels of the hybrid host probably due to the lower degree of organization of the thin films structure. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid organic-inorganic ionic conductors, also called ormolytes (organically modified electrolytes), were obtained by dissolution of LiClO 4 in siloxane-poly(propylene glycol) matrixes. The dynamic features of these nanocomposites were studied and correlated to their electrical properties. Solid-state nuclear magnetic resonance (NMR) spectroscopy was used to probe the effects of the temperature and nanocomposite composition on the dynamic behaviors of both the ionic species ( 7Li) and the polymer chains ( 13C). NMR, dc ionic conductivity, and DSC results demonstrate that the Li + mobility is strongly assisted by the segmental motion of the polymer chain above its glass transition temperature. The ac ionic conductivity in such composites is explained by use of the random free energy barrier (RFEB) model, which is agreement with their disordered and heterogenous structures. These solid ormolytes are transparent and flexible, and they exhibit good ionic conductivity at room temperature (up to 10 -4 S/cm). Consequently, they are very promising candidates for use in several applications such as batteries, sensors, and electrochromic and photoelectro-chemical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planar waveguides have been prepared on the ZrO2-(3-glycidiloxypropyl)trimethoxysilane (GPTS) system. Stable sols containing ZrO2 nanoparticles have been prepared and characterized by Photon Correlation Spectroscopy. The nanosized sol was embedded in (3-glycidoxipropyl)trimethoxisilane (GPTS) used as a hybrid host for posterior deposition. The opticalparameters of the waveguides such as refractive index, thickness and propagating modes and attenuation coefficient were measured at 632.8. 543.5 and 1550 nm by the prism coupling technique as a function of the Zr02 content. The planar waveguides present thickness of a few microns and support well confined propagating modes. Er doped samples display weak and broad (δλ≈96nm) emission at 1.5 μm.