366 resultados para Initiator
Resumo:
This thesis describes an experimental investigation of synthesis of polystyrene under various polymerization conditions such as solvent polarity, temperature, initial concentrations of initiator, catalyst, monomer and added salts or co-catalyst, which was achieved using the living cationic polymerization technology in conjunction with gel permeation chromatography (GPC) and NMR spectroscopy. Polymerizations of styrene were conducted using 1-phenyl ethylchloride (1-PEC) as an initiator and tin tetrachloride (SnCI4) as a catalyst in the presence of tetra-n-Butylammonium chloride (nBu4NCI). Effects of solvent polarity varied by mixing dichloromethane (DCM) and less polar cyclohexane (C.hex), temperature, initial concentrations of SnC14, 1-PEC and nBu4NCI on the polymerizations were examined, and the conditions under which a living polymerization can be obtained were optimised as: [styrene]o ~ 0.75 - 2 M; [1-PEC]o ~ 0.005 - 0.05 M; [SnCI4Jo ~ 0.05 - 0.4 M; [nBu4NCIJo ~ 0.001 - 0.1 M; DCM/C.hex ~ 50/0 - 20/30 v/v; T ~ 0 to -45°C. Kinetic studies of styrene polymerization using the Omnifit sampling method showed that the number average molecular weight (Mn) of the polymers obtained increased in direct proportion to monomer conversion and agreed well with the theoretical Mn expected from the concentration ratios of monomer to initiator. The linearities of both the 1n([MJoI[M]) vs. time plot and the Mn vs. monomer conversion plot, and the narrow molecular weight distribution (MWD) measured using GPC demonstrated the livingness of the polymerizations, indicating the absence of irreversible termination and transfer within the lifetimes of the polymerizations. The proposed 'two species' propagation mechanism was found to apply for the styrene polymerization with 1-PEC/SnCI4 in the presence of nBu4NCl. The further kinetic experiments showed that living styrene polymerizations were achieved using the 1-PEC/SnCI4 initiating system in mixtures of DCM/C.hex 30/20 v/v at -15°C in the presence of various bromide salts, tetra-n-butylammonium bromide, tetra-n-pentylammonium bromide, tetra-n-heptylammonium bromide, and tetra-n-octylammonium bromide, respectively. The types of the bromide salts were found to have no significant effect on monomer conversion, Mn, polydispersity and initiation efficiency. Living polymerizations of styrene were also achieved using titanium tetrachloride (TiCI4) as a catalyst and 1-PEC as an initiator in the presence of a small amount of 2,6-di-tert-butylpyridine or pyridine instead of nBu4NCl. GPC analysis showed that the polymers obtained had narrow polydispersities (P.D. < 1.3), and the linearities of both the In([MJo/[MJ) vs. time plot and the Mn vs. monomer conversion plot demonstrated that the polymerizations are living, when the ratio of DCM and C.hex was less than 40 : 10 and the reaction temperature was not lower than -15°C. The reaction orders relative to TiCl4 and 1-PEC were estimated from the investigations into the rate of polymerization to be 2.56 and 1.0 respectively. lH and 13C NMR analysis of the resultant polystyrene would suggest the end-functionality of the product polymers is chlorine for all living polymerizations.
Resumo:
Atom transfer radical polymerisation (ATRP) of styrene in xylene solution initiated with 1-phenylethyl bromide and mediated by CuBr/N-propyl-2- pyridinemethanimine catalyst complex was studied. The polymerisation was ill-controlled, yielding polymers with broad molecular weight distributions and values of number average molecular weight considerably higher than the theoretical values calculated from 100% initiator efficiency. The degree of control afforded over the polymerisation was enhanced by use of a more soluble catalyst complex, CuBr/N-octyl-2-pyridinemethanimine. Furthermore, the use of a more polar solvent, diglyme, generated a homogeneous catalyst complex that facilitated the production of polymers having narrow molecular weight distributions (1.10 < PDi < 1.20). The kinetics of the atom transfer radical polymerisation of methyl methacrylate at 90°C in diglyme solution initiated with ethyl-2-bromoisobutyrate and mediated by CuBr/N-octyl-2-pyridinemethanimine was studied and the orders of the reaction were established. The effect on the rate of polymerisation of the ratio of CuBr:N-octyl-2-pyridinemethanimine was also determined. The temperature dependencies of the rate of polymerisation of methyl methacrylate in diglyme solution and xylene solution were studied, and were found to be non-linear and dependent upon the polarity of the solvent. The use of highly polar aprotic solvents, such as N,N-dimethylformamide and dimethylsulphoxide, was found to be detrimental to the degree of control afforded over the polymerisation of methyl methacrylate. This was circumvented by use of a 5-fold excess, over that conventionally used, of catalyst complex. The atom transfer radical polymerisation of (4-nitrophenyl)-[3-[N-[2- (methacryloyloxy)ethyl]carbazolyl]]diazene in dimethyl sulphoxide solution was studied. Although homopolymerisation yielded only oligomers, copolymerisation of this monomer with methyl methacrylate was found to be readily achievable. Keywords: ATRP, Styrene; Methyl methacrylate; Polar solvents; Fully-functional photorefractive polymer. 2
Resumo:
Alkyl aluminium alkoxides have been used as initiators for the ring opening polymerisation of ε-caprolactone and δ-valerolactone. The effect of the reaction solvent on the kinetics of the polymerisation of ε-caprolactone has been studied. The rate of polymerisation was found to be faster in solvents of lower polarity and donor nature such as toluene. In general solvents of higher polarity resulted in a decreased rate of polymerisation. However solvents such as THF or DMF with a lone pair of electrons capable of forming a complex with the aluminium centre slowed the polymerisation further. The size of the monomer also proved to be an important factor in the kinetics of the reaction. The six membered ring, δ-valerolactone has less ring strain than the seven membered ring ε-caprolactone and thus the polymerisation of δ-valerolactone is slower than the corresponding polymerisation of ε-caprolactone. Both the alkoxide and alkyl group structures have an effect on the polymerisation. In general bulkier alkoxide groups provide greater steric hindrance around the active site at the beginning of the reaction. This causes an induction or a build up period that is related to the both the steric hindrance and also the electronic effects provided by the alkoxide group. The alkyl group structure has an effect throughout the polymerisation because it remains adjacent to the active centre. The number of alkoxide groups on the aluminium centre is also important, using a dialkoxide as an initiator yields polymers with molecular weights approximately half that of the corresponding reactions using a mono alkoxide. Transesterification reactions have also been found to occur after most of the monomer has been consumed. These transesterification reactions are exaggerated as temperature increases. A method of producing tri-block co-polymers has also been developed. A di-hydroxy functional pre-polymer, PHBV, was reacted with an aluminium alkyl to form a di-alkoxide macroinitiator which was subsequently used as an initiator for the polymerisation of ε-caprolactone to form an ABA type tri-block co-polymer. The molecular weight and other properties were predictable from the initial monomer/initiator ratios.
Resumo:
This thesis was concerned primarily with the synthesis and the ring-opening polymerisation of anhydrosulfites (1,3,2-dioxa-thiolan-4-one-2-oxides), and secondly with the copolymerisation of anhydrosulfites with -caprolactone. The polyesters and copolyesters synthesised are of considerable interest in medical applications and also for use as environmental friendly packaging. A range of anhydrosulfites were prepared according to an established method. Aliphatic anhydrosulfites were obtained with a level of purity satisfactory for polymerisation whereas aromatic anhydrosulfites decomposed during distillation and purification by chromatographic techniques. Aliphatic anhydrosulfites with a substituent, such as methyl, isopropyl, n-butyl and isobutyl were studied by NMR spectroscopy. Analysis of these spectra revealed that the five-membered anhydrosulfite ring was puckered and that when the substituent was bulky, rotations about the alkyl chains were restricted. A wide range of anionic initiators may be used to initiate anhydrosulfites. Lithium alkyls turned out to be more successful than alkali metal alkoxides and amides. The molecular weights were found to depend on the basicity of the initiator, the monomer-to-initiator ratio, the nature of the solvent and the polymerisation temperature. The molecular weight M0 of poly(L-lactic acid) ranged from (0.5 to 6)x104. Highly crystalline and purely isotactic poly(lactic acid) was synthesised from L-lactic acid anhydrosulfite (L-LAAS) whereas DL-LAAS led to an amorphous polymer with randomly distributed D-and L-lactic units. This indicated that this polymerisation was not stereoselective. However, the bulkiness of the substituent in the anhydrosulfites molecule was found to influence the stereoselectivity of the polymerisation, thus polyesters with isobutyl or n-butyl pendant group were preferentially isotactic. Block-copolymers of ε-caprolactone and several anhydrosulfites were successfully produced. Block-copolymers of LAAS with ε-caprolactone were also synthesised, but the incorporation of caprolactone units was rather small. In contrast, random copolymerisation of LAAS and ε-caprolactone led to polymers with blocky structures similar to those obtained in the block-copolymerisation of LAAS with ε-caprolactone.
Resumo:
A study has been made of the anionic polymerisation of methyl methacrylate using butyllithium and polystyryl lithium as initiators and the effects of lithium chloride and aluminium alkyls on the molecular weight and molecular weight distributions. Diblock copolymers of styrene-b-methyl methacrylate were synthesised at -78oC in THF in the presence of lithium chloride, and at ambient temperatures in toluene in the presence of aluminium alkyls. Studies in the presence of lithium chloride showed that the polymerisation was difficult to control; there was no conclusive evidence of a living system and the polydispersity indices were between 1.5 and 3. However, using relatively apolar solvents, in the presence of aluminium alkyls, homopolymerisation of methyl methacrylate showed characteristics of a living polymerisation. An investigation of the effects of the structures of the lithium and aluminium alkyls on the efficiency of initiation showed that a t-butyllithium/triisobutylaluminium initiating system exhibited an efficiency of 80%, compared with lower efficiencies (typically 30%) for systems based on butyllithium/triethylaluminium.The polydispersity index was found to decrease from ∼2.2 to ∼1.5 when butyllithium was replaced by t-butyllithium. The efficiency of the initiator was found to be solely dependent on the size of the alkyl group of the aluminium component, whereas the polydispersity index was found to be solely dependent on the size of the alkyl group on the lithium component. The aluminium alkyl is thought to be co-ordinated to the ester carbonyl groups of both the monomer and polymer. There is a critical degree of polymerisation, at which point the rate of polymerisation decreases, which probably relates to a change in structure of the active chain end. Characterisation of poly(styrene )-b-poly(4-vinylpyridine) and poly(styrene)-b-poly(4-vinylpyridine methyl iodide) diblock copolymers using static light scattering techniques, showed the formation of star-shaped 'reverse' micelles when placed in toluene. Temperature effects on micellization behaviour are only exhibited for the unquaternised micelles, which showed characterisically lower aggregation numbers than their quaternised counterparts. A suitable solvent was not obtained for characterisation of the styrene-b-methyl methacrylate diblock copolymers synthesized.
Resumo:
The primary objective of this research was to examine the concepts of the chemical modification of polymer blends by reactive processing using interlinking agents (multi-functional, activated vinyl compounds; trimethylolpropane triacrylates {TRIS} and divinylbenzene {DVD}) to target in-situ interpolymer formation between immiscible polymers in PS/EPDM blends via peroxide-initiated free radical reactions during melt mixing. From a comprehensive survey of previous studies of compatibility enhancement in polystyrene blends, it was recognised that reactive processing offers opportunities for technological success that have not yet been fully realised; learning from this study is expected to assist in the development and application of this potential. In an experimental-scale operation for the simultaneous melt blending and reactive processing of both polymers, involving manual injection of precise reactive agent/free radical initiator mixtures directly into molten polymer within an internal mixer, torque changes were distinct, quantifiable and rationalised by ongoing physical and chemical effects. EPDM content of PS/EPDM blends was the prime determinant of torque increases on addition of TRIS, itself liable to self-polymerisation at high additions, with little indication of PS reaction in initial reactively processed blends with TRIS, though blend compatibility, from visual assessment of morphology by SEM, was nevertheless improved. Suitable operating windows were defined for the optimisation of reactive blending, for use once routes to encourage PS reaction could be identified. The effectiveness of PS modification by reactive processing with interlinking agents was increased by the selection of process conditions to target specific reaction routes, assessed by spectroscopy (FT-IR and NMR) and thermal analysis (DSC) coupled dichloromethane extraction and fractionation of PS. Initiator concentration was crucial in balancing desired PS modification and interlinking agent self-polymerisation, most particularly with TRIS. Pre-addition of initiator to PS was beneficial in the enhancement of TRIS binding to PS and minimisation of modifier polymerisation; believed to arise from direct formation of polystyryl radicals for addition to active unsaturation in TRIS. DVB was found to be a "compatible" modifier for PS, but its efficacy was not quantified. Application of routes for PS reaction in PS/EPDM blends was successful for in-situ formation of interpolymer (shown by sequential solvent extraction combined with FT-IR and DSC analysis); the predominant outcome depending on the degree of reaction of each component, with optimum "between-phase" interpolymer formed under conditions selected for equalisation of differing component reactivities and avoidance of competitive processes. This was achieved for combined addition of TRIS+DVB at optimum initiator concentrations with initiator pre-addition to PS. Improvements in blend compatibility (by tensiles, SEM and thermal analysis) were shown in all cases with significant interpolymer formation, though physical benefits were not; morphology and other reactive effects were also important factors. Interpolymer from specific "between-phase" reaction of blend components and interlinking agent was vital for the realisation of positive performance on compatibilisation by the chemical modification of polymer blends by reactive processing.
Resumo:
The principal objective of this work was to improve the mechanical properties of glass fibre reinforced polypropylene (PP) composites by the mechanochemical modification of the PP. The modification of the PP was carried out by reactive processing of the PP with a modifier in a Buss Ko-Kneader. Two main types of modifier were evaluated one type based on N-substituted maleimides the others based on 2-allylamino-4,6-dichloro-1,3,5-triazine (ACCT). The modification of the PP was carried out in two stages. Firstly the PP was reactively processed with the modifier and a free radical initiator. The objective of this stage was to bind the modifier to the PP. In the second stage the modified PP was reactively processed with the glass fibre. The objective in this stage was to form a chemical bond between the bound modifier and the silane coupling agent on the surface of the glass. Two silane coupling agents were evaluated these had a aliphatic chloro group and an aliphatic amino group respectively available for reaction with the modifier. The modifiers synthesised for this work had two main functional groups. The first was a double bond for free radical addition to the PP. The second was an organic group chosen for its potential reactivity to the silane coupling agent. A preliminary investigation was carried out using maleic anhydride (MA) as the modifier, this is reactive to the amino silane coupled glass. Studies of a commercially available system were also carried out for comparison purposes. During the work it was found that the amino silane coupled glass fibres produced, without any modification being made to the PP, mechanical properties comparable to the commercial system. Further any modification added to the amino silane system failed to improve the mechanical performance and in some cases acted in the opposite fashion. This failure was evident even when a chemical bond between glass fibre and PP could be shown. In the case of the chloro silane coupled glass fibres the mechanical properties of the composite without modification were poorer than those of the commercial system. It was found that the mechanical properties of these systems could be enhanced by the modifiers, however, no system tested significantly out performed the commercial system. Of the two modifier systems tested those based on the n-substituted maleimides were more successful at enhancing mechanical properties than those based on ACCT. This was attributed to the Poor chemical binding of the ACCT based modifiers to the PP. During the work it was found that several of the modifiers improved the properties of the PP when no glass fibres were present, particularly the % elongation and impact strength. It is possible that these modifiers could be used to improve the impact performance of PP, this may be of particular interest in recycling. These modifiers have only been tested for improving the properties of glass fibre composites. The N-substituted maleimide based modifiers could be used as compatibleisers for alloys of PP and other polymers. These could function by the formation of the bond with PP via the double bond whilst the group attached to the nitrogen atom could react with the alloying polymer.
Resumo:
The cationic polymerisation of various monomers, including cyclic ethers bearing energetic nitrate ester (-ON02) groups, substituted styrenes and isobutylene has been investigated. The main reaction studied has been the ring-opening polymerisation of 3- (nitratomethyl)-3-methyl oxetane (NIMMO) using the alcohol/BF3.0Et2 binary initiator system. A series of di-, tri- and tetrafunctional telechelic polymers has been synthesised. In order to optimise the system, achieve controlled molecular weight polymers and understand the mechanism of polymerisation the effects of certain parameters on the molecular weight distribution, as determined by Size Exclusion Chromatography, have been examined. This shows the molecular weight achieved depends on a combination of factors including -OH concentration, addition rate of monomer and, most importantly, temperature. A lower temperature and OH concentration tends to produce higher molecular weight, whereas, slower addition rates of monomer, either have no significant effect or produce a lower molecular weight polymer. These factors were used to increase the formation of a cyclic oligomer, by a side reaction, and suggest, that the polymerisation of NIMMO is complicated with endbiting and back biting reactions, along with other transfer/termination processes. These observations appear to fit the model of an active-chain end mechanism. Another cyclic monomer, glycidyl nitrate (GLYN), has been polymerised by the activated monomer mechanism. Various other monomers have been used to end-cap the polymer chains to produce hydroxy ends which are expected to form more stable urethane links, than the glycidyl nitrate ends, when cured with isocyanates. A novel monomer, butadiene oxide dinitrate (BODN), has been prepared and its homopolymerisation and copolymerisation with GL YN studied. In concurrent work the carbocationic polymerisations of isobutylene or substituted styrenes have been studied. Materials with narrow molecular weight distributions have been prepared using the diphenyl phosphate/BCl3 initiator. These systems and monomers are expected to be used in the synthesis of thermoplastic elastomers.
Resumo:
The research described in this thesis explored the synthesis tlnd characteristltion of biocompatible and biodegradable polymers of lactide through non-toxic titanium alkoxide nitiators. The research objectives focused on the preparation of polylactides in both solvent and solventless media, to produce materials with a wide range of molecular weights. The polylactides were fully characterised using gel permeation chromatography and 1H and 13C NMR spectroscopy. NMR spectroscopy was carried out in the study the reaction mechanisms. Kinetic studies of the ring opening polymerisation of lactide with titanium alkoxide initiators were also conducted using NMR spectroscopy. The objectives of this research were also focused on the enhancement of the flexibility of the polymer chains by synthesising random and block copolymers of lactide and ε-caprolactone using Ti(0-i-Pr)4 as an initiator, This work involved extensive characterisalion of the synthesised copolymers using gel permeation chromatography and 1H and 13C NMR spectroscopic analysis. Kinetic studies of the ring opening polymerisation of ε-caplrolactone and of the copolymerisation of lactide and ε-caprolactone with Ti(O-i-Pr)4 as an initiator were also carried out. The last section of this work involved the synthesis of block and star-shaped copolymers of lactide and poly(ethylene glycol) [PEG]. The preparation of lactide/PEG block copolymers was carried out by ring opening polymerisation of L-Iactide using Ti(O-i-Pr)4 as an initiator and hydroxyl-terminated PEG's with different numbers of hydroxyl groups as co-initiators both in solution and solventless media. These all-in-one polymersations yielded the synthesis of both lactide homopolymer and lactide/PEG block copolymer. In order to selectively synthesise copolymers of lactide and PEG, the experiment was carried out in two steps. The first step consisted of the synthesis of a titanium macro-initiator by exchanging the iso-propoxide ligands by PEG with different numbers of hydroxyl groups. The second step involved the ring opening polymerisation of lactide using the titanium macrocatalyst that was prepared as an initiator. The polymerisations were carried out in a solventless media. The synthesis of lactide/PEG copolymers using polyethylene glycol with amino terminal groups was also discussed. Extensive characterisation of the lactide block copolymers and macroinitiators was carried out using techniques such as, gel permeation chromatography (GPC), NMR spectroscopy and differential scanning calorimeter (DeS).
Resumo:
This thesis is concerned with the development of hydrogels that adhere to skin and can be used for topical or trans dermal release of active compounds for therapeutic or cosmetic use. The suitability of a range of monomers and initiator systems for the production of skin adhesive hydro gels by photopolymerisation was explored and an approximate order of monomer reactivity in aqueous solution was determined. Most notably, the increased reactivity of N-vinyl pyrrolidone within an aqueous system, as compared to its low rate of polymerisation in organic solvents, was observed. The efficacy of a series of photoinitiator systems for the preparation of sheet hydrogels was investigated. Supplementary redox and thermal initiators were also examined. The most successful initiator system was found to be Irgacure 184, which is commonly used in commercial moving web production systems that employ photopolymerisation. The influence of ionic and non-ionic monomers, crosslinking systems, water and glycerol on the adhesive and dynamic mechanical behaviour of partially hydrated hydrogel systems was examined. The aim was to manipulate hydrogel behaviour to modify topical and transdermal delivery capability and investigated the possibility of using monomer combinations that would influence the release characteristics of gels by modifying their hydrophobic and ionic nature. The copolymerisation of neutral monomers (N-vinyl pyrrolidone, N,N-dimethyl acrylamide and N-acryloyl morpholine) with ionic monomers (2-acrylamido-2-methylpropane sulphonic acid; sodium salt, and the potassium salt of 3-sulphopropyl acrylate) formed the basis of the study. Release from fully and partially hydrated hydrogels was studied, using model compounds and a non-steroidal anti-inflammatory drug, Ibuprofen. Release followed a common 3-stage kinetic profile that includes an initial burst phase, a secondary phase of approximate first order release and a final stage of infinitesimally slow release such that the compound is effectively retained within the hydrogel. Use of partition coefficients, the pKa of the active and a knowledge of charge-based and polar interactions of polymer and drug were complementary in interpreting experimental results. In summary, drug ionisation, hydrogel composition and external release medium characteristics interact to influence release behaviour. The information generated provides the basis for the optimal design of hydrogels for specific dermal release applications and some understanding of the limitations of these systems for controlled release applications.
Resumo:
Eukaryotic initiation factor 2A (eIF2A) has been shown to direct binding of the initiator methionyl-tRNA (Met-tRNA(i)) to 40 S ribosomal subunits in a codon-dependent manner, in contrast to eIF2, which requires GTP but not the AUG codon to bind initiator tRNA to 40 S subunits. We show here that yeast eIF2A genetically interacts with initiation factor eIF4E, suggesting that both proteins function in the same pathway. The double eIF2A/eIF4E-ts mutant strain displays a severe slow growth phenotype, which correlated with the accumulation of 85% of the double mutant cells arrested at the G(2)/M border. These cells also exhibited a disorganized actin cytoskeleton and elevated actin levels, suggesting that eIF2A might be involved in controlling the expression of genes involved in morphogenic processes. Further insights into eIF2A function were gained from the studies of eIF2A distribution in ribosomal fractions obtained from either an eIF5BDelta (fun12Delta) strain or a eIF3b-ts (prt1-1) strain. It was found that the binding of eIF2A to 40 and 80 S ribosomes was not impaired in either strain. We also found that eIF2A functions as a suppressor of Ure2p internal ribosome entry site-mediated translation in yeast cells. The regulation of expression from the URE2 internal ribosome entry site appears to be through the levels of eIF2A protein, which has been found to be inherently unstable with a half-life of approximately 17 min. It was hypothesized that this instability allows for translational control through the level of eIF2A protein in yeast cells.
Resumo:
Cachexia inducing tumours are known to produce a glycoprotein called proteolysis inducing factor (PIF), which induces skeletal muscle atrophy via increased protein degradation and decreased protein synthesis. The objective of this study was to investigate the signalling pathway by which PIF reduces protein synthesis in skeletal muscle and to determine the link, if any, to the ability to induce protein degradation. In murine myotubes PIF induced an increase in expression of the active form of the dsNRA dependent protein kinase (PKR), as well as the phosphorylated form of the translation initiator elF2a, possibly through the release of calcium, at the same concentration as that inhibiting protein synthesis. Inhibition of PKR reversed the inhibition of protein synthesis by PIF and also the induction of protein degradation through the ubiquitin-proteasome pathway by a reduction in the nuclear migration of NK-?B. The expression of phosphorylated forms of PKR and elF2a was also increased in the muscle of cancer patients experiencing weight loss, and in gastrocnemius muscle of mice bearing the cachexia inducing MAC16 tumour, as well as in the tumour itself. Treatment of mice bearing the MAC16 tumour with a PKR inhibitor attenuated muscle atrophy and inhibited tumour growth, through the inactivation of PKR and the consequent reduction of nuclear accumulation of NF-?B. A decreased translational efficiency of the elF-4F complex of initiation factors through dephosphorylation of 4E-BP1 and an increase eEF2 phosphorylation was seen in response to PIF in vitro. The same pattern of events also occurred in gastrocnemius muscle of mice bearing the MAC16 tumour demonstrating weight loss, where a depression of mTOR and p70S6K activation was also observed as weight loss increased.
Resumo:
The effect of mechano-chemically bound polypropylene modifiers on the mechanical performance and thermal-oxidative stability of polypropylene composites has been studied. The mechanical performance of unmodified polypropylene containing silane coupled glass and Rockwool (mineral) fibre was poor by comparison with a similar commercially produced glass reinforced composite; this was attributed to poor fibre-matrix adhesion. Mechano-chemical binding with unsaturated additives was obtained in the presence of a free radical initiator (di-cumyl peroxide). This process was inhibited by stabilisers present in commercial grades of polypropylene composites by chemical bond formation between the chemically bound modifier and the silane coupling agent on the fibre surface, resulting in a dramatic improvement in the mechanical properties, dimensional stability and retention of mechanical performance after immersion in fluids typically found in under-bonnet environments.A feature unique to some of these modifiers was their ability not only to enhance the mechanical properties of polypropylene composites to levels substantially in excess of currently available commercial materials, but their ability to act as effective thermal-oxidative polypropylene stabilisers. The mode of action was shown to be a chain-breaking mechanism and as a result of the high binding levels achieved during melt processing, these modifiers were able to efficiently stabilise polypropylene in the most severe volatilising and solvent-extracting environments, thus giving much better protection to the polymer than currently available commercially stabilised grades of polypropylene.
Resumo:
The main aim of this work was two fold, firstly to investigate the effect of a highly reactive comonomer, divinylbenzene (DVB), on the extent of melt grafting of glycidyl methacrylate (GMA) on ethylene-propylene rubber (EPR) using 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (Trigon ox 101, Tl 01) as a free radical initiator, and to compare the results with a conventional grafting of the same monomer on EPR. To achieve this, the effect of processing conditions and chemical composition including the concentration of peroxide, GMA and DVB on the extent of grafting was investigated. The presence of the comonomer (DVB) in the grafting process resulted in a significant increase in the extent of the grafting using only a small concentration of peroxide. It was also found that the extent of grafting increased drastically with increasing the DVB concentration. Interestingly, in the comonomer system, the extent of the undesired side reaction, normally the homopolymerisation of GMA (polyGMA) was shown to have reduced tremendously and in most cases the level of polyGMA was immeasurable in the samples. Compared to a conventional EPR-g-GMACONV (in the absence of a comonomer), the presence of the comonomer DVB in the grafting system was shown to result in more branching and crosslinking (shown from an increase in melt flow index (MFI) and torque values) and this was paralleled by an increase in DVB concentration. In contrast, the extent of grafting in conventional system increased with increasing the peroxide concentration but the level of grafting was much lower than in the case of DVB. Homopolymerisation of GMA and excessive crosslinking of EPR became dominant at high peroxide concentration and this. reflects that the side reactions were favorable in the conventional grafting system. The second aim was to examine the effect of the in-situ functionalised EPR when used as a compatibiliser for binary blends. It was found that blending PET with functionalised EPR (ƒ-EPR) gave a significant improvement in terms of blend morphology as well as mechanical properties. The results showed clearly that, blending PET with ƒ-EPRDVB (prepared with DVB) was much more effective compared to the corresponding PET/ƒ-EPRCONV (without DVB) blends in which ƒ-EPRDVB having optimum grafting level of 2.1 wt% gave the most pronounced effect on the morphology and mechanical properties. On the other hand, blends of PET/ƒ-EPRDVB containing high GMA/DVB ratio was found to be unfavorable hence exhibited lower tensile properties and showed unfavorable morphology. The presence of high polyGMA concentration in ƒ-EPRCONV was found to create damaging effect on its morphology, hence resulting in reduced tensile properties (e.g. low elongation at break). However, the use of commercial terpolymers based on ethylene-methacrylate-glycidyl methacrylate (EM-GMA)or a copolymer of ethylene-glycidyl methacrylate (E-GMA) containing various GMA levels as compatibilisers in PET/EPR blends was found to be more efficient compared to PET/EPR/ƒ-EPR blends with the former blends showing finer morphology and high elongation at break. The high efficiency of the terpolymers or copolymers in compatibilising the PET/EPR blends is suggested to be partly, higher GMA content compared to the amount in ƒ-EPR and due to its low viscosity.
Resumo:
Several cationic initiator systems were developed and used to polymerise oxetane with two oxonium ion initiator systems being investigated in depth. The first initiator system was generated by the elimination of a chloride group from a chloro methyl ethyl ether. Adding a carbonyl co-catalyst to a carbocationic centre generated the second initiator system. It was found that the anion used to stabilise the initiator was critical to the initial rate of polymerisation of oxetane with hexafluoroantimonate resulting in the fastest polymerisations. Both initiator systems could be used at varying monomer to initiator concentrations to control the molecular number average, Mn, of the resultant polymer. Both initiator systems showed living characteristics and were used to polymerise further monomers and generate higher molecular weight material and block copolymers. Oxetane and 3,3-dimethyl oxetane can both be polymerised using either oxonium ion initiator system in a variety of DCM or DCM/1,4-dioxane solvent mixtures. The level of 1,4-dioxane does have an impact on the initial rate of polymerisation with higher levels resulting in lower initial rates of polymerisation but do tend to result in higher polydispersities. The level of oligomer formation is also reduced as the level of 1,4-dioxane is increased. 3,3-bis-bromomethyl oxetane was also polymerised but a large amount of hyperbranching was seen at the bromide site resulting in a difficult to solvate polymer system. Multifunctional initiator systems were also generated using the halide elimination reactions with some success being achieved with 1,3,5-tris-bromomethyl-2,4,6-tris-methyl-benzene derived initiator system. This offered some control over the molecular number average of the resultant polymer system.