902 resultados para Inducible Defence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The myokine irisin is supposed to be cleaved from a transmembrane precursor, FNDC5 (fibronectin type III domain containing 5), and to mediate beneficial effects of exercise on human metabolism. However, evidence for irisin circulating in blood is largely based on commercial ELISA kits which are based on polyclonal antibodies (pAbs) not previously tested for cross-reacting serum proteins. We have analyzed four commercial pAbs by Western blotting, which revealed prominent cross-reactivity with non-specific proteins in human and animal sera. Using recombinant glycosylated and non-glycosylated irisin as positive controls, we found no immune-reactive bands of the expected size in any biological samples. A FNDC5 signature was identified at ~20 kDa by mass spectrometry in human serum but was not detected by the commercial pAbs tested. Our results call into question all previous data obtained with commercial ELISA kits for irisin, and provide evidence against a physiological role for irisin in humans and other species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the tetracycline-off and Cre/loxP systems were combined to gain temporal and spatial control of transgene expression. Mice were generated that carried three transgenes: Tie2-tTA, tet-O-Cre and either the ZEG or ZAP reporter. Tie2-tTA directs expression of tetracycline-controlled transactivator (tTA) in endothelial and hematopoietic cells under the control of the Tie2 promoter. Tet-O-Cre produces Cre recombinase from a minimal promoter containing the tet-operator (tetO). ZEG or ZAP contains a strong promoter and a loxP-flanked stop sequence, followed by an enhanced green fluorescence protein (EGFP) or human placental alkaline phosphatase (hPLAP) reporter. In the presence of tetracycline, the tTA transactivator produced by Tie-2-tTA is disabled and Cre is not expressed. In the absence of tetracycline, the tTA binds tet-O-Cre to drive the expression of Cre, which recombines the loxP sites of the ZEG or ZAP transgene and results in reporter gene expression. In the present study, the expression of the ZEG or ZAP reporter genes in embryos and adult animals with and without tetracycline treatment was examined. In the presence of tetracycline, no reporter gene expression was observed. When tetracycline was withdrawn, Cre excision was activated and the reporter genes were detected in endothelial and hematopoietic cells. These results demonstrate that this system may be used to bypass embryonic lethality and access adult phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Notch1 signaling pathway is essential for hematopoietic development. However, the effects of postnatal activation of Notch1 signaling on hematopoietic system is not yet fully understood. We previously generated ZEG‑IC‑Notch1 transgenic mice that have a floxed β‑geo/stop signal between a CMV promoter and intracellular domain of Notch1 (IC‑Notch1). Constitutively active IC‑Notch1 is silent until the introduction of Cre recombinase. In this study, endothelial/hematopoietic specific expression of IC‑Notch1 in double transgenic ZEG‑IC‑Notch1/Tie2‑Cre embryos induced embryonic lethality at E9.5 with defects in vascular system but not in hematopoietic system. Inducible IC‑Notch1 expression in adult mice was achieved by using tetracycline regulated Cre system. The ZEG‑IC‑Notch1/Tie2‑tTA/tet‑O‑Cre triple transgenic mice survived embryonic development when maintained on tetracycline. Post‑natal withdrawal of tetracycline induced expression of IC‑Notch1 transgene in hematopoietic cells of adult mice. The triple transgenic mice displayed extensive T‑cell infiltration in multiple organs and T‑cell malignancy of lymph nodes. In addition, the protein levels of p53 and alternative reading frame (ARF) were decreased in lymphoma‑like neoplasms from the triple transgenic mice while their mRNA expression remained unchanged, suggesting that IC‑Notch1 might repress ARF‑p53 pathway by a post‑transcriptional mechanism. This study demonstrated that activation of constitutive Notch1 signaling after embryonic development alters adult hematopoiesis and induces T‑cell malignancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The optimal defence hypothesis (ODH) predicts that tissues that contribute most to a plant's fitness and have the highest probability of being attacked will be the parts best defended against biotic threats, including herbivores. In general, young sink tissues and reproductive structures show stronger induced defence responses after attack from pathogens and herbivores and contain higher basal levels of specialized defensive metabolites than other plant parts. However, the underlying physiological mechanisms responsible for these developmentally regulated defence patterns remain unknown. Scope This review summarizes current knowledge about optimal defence patterns in above- and below-ground plant tissues, including information on basal and induced defence metabolite accumulation, defensive structures and their regulation by jasmonic acid (JA). Physiological regulations underlying developmental differences of tissues with contrasting defence patterns are highlighted, with a special focus on the role of classical plant growth hormones, including auxins, cytokinins, gibberellins and brassinosteroids, and their interactions with the JA pathway. By synthesizing recent findings about the dual roles of these growth hormones in plant development and defence responses, this review aims to provide a framework for new discoveries on the molecular basis of patterns predicted by the ODH. Conclusions Almost four decades after its formulation, we are just beginning to understand the underlying molecular mechanisms responsible for the patterns of defence allocation predicted by the ODH. A requirement for future advances will be to understand how developmental and defence processes are integrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants activate local and systemic defence mechanisms upon exposure to stress. This innate immune response is partially regulated by plant hormones, and involves the accumulation of defensive metabolites. Although local defence reactions to herbivores are well studied, less is known about the impact of root herbivory on shoot defence. Here, we examined the effects of belowground infestation by the western corn rootworm Diabrotica virgifera virgifera on aboveground resistance in maize. Belowground herbivory by D. v. virgifera induced aboveground resistance against the generalist herbivore Spodoptera littoralis, and the necrotrophic pathogen Setosphaeria turcica. Furthermore, D. v. virgifera increased shoot levels of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and primed the induction of chlorogenic acid upon subsequent infestation by S. littoralis. To gain insight into the signalling network behind this below- and aboveground defence interaction, we compiled a set of 32 defence-related genes, which can be used as transcriptional marker systems to detect activities of different hormone-response pathways. Belowground attack by D. v. virgifera triggered an ABA-inducible transcription pattern in the shoot. The quantification of defence hormones showed a local increase in the production of oxylipins after root and shoot infestation by D. v. virgifera and S. littoralis, respectively. On the other hand, ABA accumulated locally and systemically upon belowground attack by D. v. virgifera. Furthermore, D. v. virgifera reduced the aboveground water content, whereas the removal of similar quantities of root biomass had no effect. Our study shows that root herbivory by D. v. virgifera specifically alters the aboveground defence status of a maize, and suggests that ABA plays a role in the signalling network mediating this interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants are important mediators between above- and belowground herbivores. Consequently, interactions between root and shoot defences can have far-reaching impacts on entire food webs. We recently reported that infestation of maize roots by the root feeding larvae of the beetle Diabrotica virgifera virgifera boosts shoot resistance against herbivores and pathogens. Root herbivory also induced DIMBOA levels and primed for enhanced induction of chlorogenic acid, two secondary metabolites that have been associated with biotic stress resistance. Interestingly, ABA emerged as a putative long-distance signal, possibly responsible for this effect. In this addendum, we investigate the role of root-derived ABA in the systemic regulation of aboveground DIMBOA, and the phenolic compounds chlorogenic acid, caffeic and ferulic acid. We discuss the relevance of the plant hormone in relation to defence against the leaf herbivore Spodoptera littoralis. Soil-drench treatment with ABA mimicked root herbivore-induced accumulation of DIMBOA in the leaves. Similarly, ABA mimicked aboveground priming of chlorogenic acid production, resulting in augmented accumulation of this compound upon subsequent shoot attack by S. littoralis. These findings confirm our notion that ABA acts as an important signal in the regulation of aboveground defence upon belowground herbivory. However, based on our previous finding that ABA alone is not sufficient to trigger aboveground resistance against S. littoralis caterpillars, the results suggest that the ABA-inducible effects on DIMBOA and chlorogenic acid are not solely responsible for root herbivore-induced resistance against S. littoralis. Full text HTML PDF

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motifs and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roots play an important role for plant defence and resistance against pathogens and insect herbivores: They act as environmental sensors for space, nutrients and water, they are important biosynthetic sites of plant toxins, they can store assimilates for future regrowth, and they possess themselves a potent defensive system to fend off belowground attackers. Although roots are often seen as passive tissue that only delivers services to the rest of the plant, it is becoming increasingly evident that roots actively respond to environmental conditions and are a vital part of the plant’s signaling and perception machinery. This chapter summarizes what is known about roots as constituents of plant resistance and defense mechanisms, with a particular emphasis on signaling aspects. It also discusses how the increasing knowledge about roots can be used to help protect plants from harmful pests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For perceptual-cognitive skill training, a variety of intervention methods has been proposed, including the so-called “color-cueing method” which aims on superior gaze-path learning by applying visual markers. However, recent findings challenge this method, especially, with regards to its actual effects on gaze behavior. Consequently, after a preparatory study on the identification of appropriate visual cues for life-size displays, a perceptual-training experiment on decision-making in beach volleyball was conducted, contrasting two cueing interventions (functional vs. dysfunctional gaze path) with a conservative control condition (anticipation-related instructions). Gaze analyses revealed learning effects for the dysfunctional group only. Regarding decision-making, all groups showed enhanced performance with largest improvements for the control group followed by the functional and the dysfunctional group. Hence, the results confirm cueing effects on gaze behavior, but they also question its benefit for enhancing decision-making. However, before completely denying the method’s value, optimisations should be checked regarding, for instance, cueing-pattern characteristics and gaze-related feedback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd(-/-)) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd(-/-) mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd(-/-) mice. These changes were reduced in DiNOS, and compared with Sftpd(-/-) mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd(-/-). Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS Pulmonary vein isolation (PVI) is an effective treatment option for paroxysmal atrial fibrillation (PAF). Reconnection of pulmonary veins (PVs) is the predominant cause for recurrence of PAF. However, treatment of patients with recurrence of PAF despite isolated PV in the absence of extra-PV foci remains challenging. METHODS AND RESULTS Of 265 patients undergoing repeat catheter ablation (CA) for recurrence of PAF 21 (8%) patients (14 men, age 58 ± 14 years) showed no reconnection of PV. Therefore, inducibility of sustained atrial arrhythmias was tested. If sustained atrial fibrillation (AF) or sustained atrial tachycardia (AT) was induced, patients underwent CA. During follow-up (FU), Holter- and Tele-electrocardiogram were performed. In 19 (91%) of 21 patients, sustained atrial arrhythmias [16 (84%) AF; 3 (15%) patients AT] were induced. One patient showed PAF. Eighteen patients underwent CA aiming for termination of induced arrhythmia. In 14 (77%) patients, termination into sinus rhythm was achieved. Despite extensive CA, three (16%) patients were externally cardioverted. No periprocedural complications occurred. During 21.2 ± 6.8-month FU, 10 (53%) patients were free of any arrhythmia. Paroxysmal atrial fibrillation recurred in 4 (21%) and AT in 5 (26%) patients. One patient showed persistent AF. Repeat CA was scheduled and successfully performed for these patients. CONCLUSION In patients with recurrence of PAF despite isolated PV, termination of induced atrial arrhythmias can be achieved in most patients by defragmentation and AT ablation. Moreover, this ablation strategy results in favourable mid-term outcome results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutrophils, the most abundant human immune cells, are rapidly recruited to sites of infection, where they fulfill their life-saving antimicrobial functions. While traditionally regarded as short-lived phagocytes, recent findings on long-term survival, neutrophil extracellular trap (NET) formation, heterogeneity and plasticity, suppressive functions, and tissue injury have expanded our understanding of their diverse role in infection and inflammation. This review summarises our current understanding of neutrophils in host-pathogen interactions and disease involvement, illustrating the versatility and plasticity of the neutrophil, moving between host defence, immune modulation, and tissue damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interferons (IFNs) have been shown to exert antiviral, cell growth regulatory, and immunomodulatory effects on target cells. Both type I (α and β) and type II (γ) IFNs regulate cellular activities by specifically inducing the expression or activation of endogenous proteins that perform distinct biological functions. p202 is a 52 kDa nuclear phosphoprotein known to be induced by IFNs. p202 interacts with a variety of cellular transcription and growth regulatory factors and affects their functions. ^ In this report, we showed that the expression of p202 was associated with an anti-proliferative effect on human prostate cancer cells. Cells that expressed p202 showed reduced ability to grow in soft-agar, indicating a loss of transformation phenotype. More importantly, p202 expression reduced the tumorigenicity of human prostate cancer cells. p202-expressing cells exhibit an elevated level of hypophosphorylated form of pRb, and reduced level of cyclin B1 and p55CDC. ^ Our data suggest that p202 is a growth inhibitor gene in prostate cancer cells and its expression may also suppress transformation phenotype and tumorigenicity of prostate cancer cells. ^ In addition to inhibiting in vitro cell growth, suppressing the tumorigenicity of breast cancer cells in vivo, p202 expression could sensitize breast cancer cells to apoptosis induced by TNF-α treatment. One possible mechanism contributing to this sensitization is the inactivation of NF-κB by its interaction with p202. These results provide a scientific basis for a novel therapeutic strategy that combines p202 and TNF-α treatment against breast cancer. ^ It has been reported that NF-κB is constitutively active in human pancreatic cancer cells. Since p202 interacts with NF-κB and inhibits its activity, we examined a potential p202-mediated anti-tumor activity in pancreatic cancer. We used both ectopic and orthotopic xenograft models and demonstrated that p202 expression is associated with multiple anti-tumor activities that include inhibition of tumor growth, reduced tumorigenicity, prolonged survival, and remarkably, suppression of metastasis and angiogenesis. In vitro invasion assay also showed that p202-expressing pancreatic cancer cells are less invasive than those without p202 expression. That observation was supported by the findings that p202-expressing tumors showed reduced expression of angiogenic factors such as IL-8, and VEGF by inhibiting their transcription, and p202-expressing pancreatic cancer cells have reduced level of MAP-2 activity, a secreted protease activity important for metastasis. Together, our results strongly suggest that p202 expression mediates multiple anti-tumor activities against pancreatic cancer, and that may provide a scientific basis for developing a p202-based gene therapy in pancreatic cancer treatment. ^ Importantly, we demonstrated a treatment efficacy by using p202/SN2 liposome complex in a nude mice orthotopic breast cancer, and an ectopic pancreatic cancer xenograft model, through systemic and intra-tumor injection respectively. These results suggest a feasibility of using p202/SN2 liposome in future pre-clinical gene therapy experiments. ^