998 resultados para Indemnity against liability
Resumo:
Oxidative damage, through increased production of free radicals, is believed to be involved in UV-induced cataractogenesis (eye lens opacification). The possibility of UVB radiation causing damage to important lenticular enzymes was assessed by irradiating 3 months old rat lenses (in RPMI-1640 medium) at 300 nm (100 mu Wcm(-2)) for 24 h, in the absence and presence of ascorbic acid, alpha-tocopherol acetate and beta-carotene. UVB irradiation resulted in decreased activities of hexokinase, glucose-6-phosphate dehydrogenase, aldose reductase, and Na, K- ATPase by 42, 40, 44 and 57% respectively. While endopeptidase activity (229%) and lipid peroxidation (156%) were increased, isocitrate dehydrogenase activity was not altered on irradiation. In the presence of externally added ascorbic acid, tocopherol and beta-carotene (separately) to the medium, the changes in enzyme activities (except endopeptidase) and increased lipid peroxidation, due to UVB exposure, were prevented. These results suggest that UVB radiation exerts oxidative damage on lens enzymes and antioxidants were protective against this damage.
Resumo:
OFHC copper pins with 10 ppm oxygen were slid against alumina at a load of 50 N and sliding speeds of 0.1 ms(-1) to 4.0 ms(-1) The wear characteristics of copper were related to the strain rate response of copper under uniaxial compression between strain rates of 0.1 s(-1) and 100 s(-1) and temperatures in the range of 298 K to 673 K. It is seen that copper undergoes flow banding at strain rates of 1 s(-1) up to a temperature of 523 K, which is the major instability in the region tested. These flow bands are regions of crack nucleation. The strain rates and temperatures existing in the subsurface of copper slid against alumina are estimated and superimposed on the strain rate response map of copper. The superposition shows that the subsurface of copper slid at low velocities is likely to exhibit flow band instability induced cracking. It is suggested that this is the,reason for the observed high wear rate at low velocities. The subsurface deformation with increasing velocity becomes more homogeneous. This reduces the wear rate. At velocities >2 ms(-1) there is homogenous flow and extrusion of thin (10 mu m) bands of material out of the trailing edge. This results in the gradual increase of wear rate with increasing velocity above 2.0 ms(-1).
Resumo:
DNA gyrase is the target of two plasmid-encoded toxins CcdB and microcin B17, which ensure plasmid maintenance. These proteins stabilize gyrase-DNA covalent complexes leading to double-strand breaks in the genome. In contrast, the physiological role of chromosomally encoded inhibitor of DNA gyrase (Gyrl) in Escherichia coli is unclear and its mechanism of inhibition has not been established. We demonstrate that the mode of inhibition of GyrI is distinct from all other gyrase inhibitors. It inhibits DNA gyrase prior to, or at the step of, binding of DNA by the enzyme. Gyrl reduces intrinsic as well as toxin-stabilized gyrase-DNA covalent complexes. Furthermore, Gyri reduces microcin B17-mediated double-strand breaks in vivo, imparting protection to the cells against the toxin, substantiating the in vitro results. Thus, Gyrl is an antidote to DNA gyrase-specific proteinaceous poisons encoded by plasmid addiction systems.
Resumo:
In lubricated sliding contacts, components wear out and the lubricating oil ages with time. The present work explores the interactive influence between lubricant aging and component wear. The flat face of a steel pin is slid against a rotating steel disk under near isothermal conditions while the contact is immersed in a reservoir of lubricant (hexadecane). The chemical changes in the oil with time are measured by vibrational spectroscopy and gas chromatography. The corresponding chemistry of the pin surface is recorded using X-ray photoelectron spectroscopy while the morphology of the worn pins; surface and subsurface, are observed using a combination of focused ion beam milling and scanning electron 5 microscopy. When compared to thermal auto-oxidation of the lubricant alone, steel on steel friction and wear are found to accentuate the decomposition of oil and to reduce the beneficial impact of antioxidants. The catalytic action of nascent iron, an outcome of pin wear and disk wear, is shown to contribute to this detrimental effect. Over long periods of sliding, the decomposition products of lubricant aging on their own, as well as in conjunction with their products of reaction with iron, generate a thick tribofilm that is highly protective in terms of friction and wear.
Resumo:
Development of an effective vaccine against tuberculosis (TB) hinges on an improved understanding of the human immune responses to Mycobacterium tuberculosis. A successful vaccination strategy should be able to stimulate the appropriate arm of the immune system with concomitant generation of the memory cells. In the absence of a perfect strategy, while long term efforts of TB researchers continue to resolve the nature of protective immunity against TB and other related issues, the current approach, dictated by the urgency of a TB vaccine, employs available knowledge and technology to develop new TB vaccines and channel the promising ones to clinical trials. While Indian scientists have contributed in several areas towards the development of a TB vaccine, this review is an attempt to summarize their contributions mainly pertaining to the discovery of new antigens, immune responses elicited by antigens against TB and development of new vaccines and their evaluation in animal models. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A novel PCR based assay was devised to specifically detect contamination of any Salmonella serovar in milk, fruit juice and ice-cream without pre-enrichment. This method utilizes primers against hilA gene which is conserved in all Salmonella serovars and absent from the close relatives of Salmonella. An optimized protocol, in terms time and money, is provided for the reduction of PCR contaminants from milk, ice-cream and juice through the use of routine laboratory chemicals. The simplicity, efficiency (time taken 3-4 h) and sensitivity (to about 5-10 CFU/ml) of this technique confers a unique advantage over other previously used time consuming detection techniques. This technique does not involve pre-enrichment of the samples or extensive sample processing, which was a pre-requisite in most of the other reported studies. Hence, this assay can be ideal for adoption, after further fine tuning, by food quality control for timely detection of Salmonella contamination as well as other food-borne pathogens (with species specific primers) in food especially milk, ice-cream and fruit juice. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In the present investigation, various kinds of textures, namely, unidirectional, 8-ground, and random were attained on the die surfaces. Roughness of the textures was varied using different grits of emery papers or polishing powders. Then pins made of Al-4Mg alloys were slid against steel plates at various numbers of cycles, namely, 1, 3, 5, 10 and 20 using pin-on-plate reciprocating sliding tester. Tests were conducted at a sliding velocity of 2 minis in ambient conditions under both dry and lubricated conditions. A constant normal load of 35 N was applied in the tests. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. Surface roughness parameters of the plates were measured using an optical profilometer. In the experiments, it was observed that the coefficient of friction and formation of the transfer layer depend on the die surface textures under both dry and lubricated conditions. More specifically, the coefficient of friction decreases for unidirectional and 8-ground surfaces while for random surfaces it increases with number of cycles. However, the coefficient of friction is highest for the sliding perpendicular to the unidirectional textures and least for the random textures under both dry and lubricated conditions. The difference in friction values between these two surfaces decreases with increasing number of cycles. The variation in the coefficient of friction under both dry and lubrication conditions is attributed to the change in texture of the surfaces during sliding. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Overexpression of Notch receptors and ligands has been associated with various cancers and developmental disorders, making Notch a potential therapeutic target. Here, we report characterization of Notch1 monoclonal antibodies (mAb) with therapeutic potential. The mAbs generated against epidermal growth factor (EGF) repeats 11 to 15 inhibited binding of Jagged1 and Delta-like4 and consequently, signaling in a dose-dependent manner, the antibodies against EGF repeats 11 to 12 being more effective than those against repeats 13 to 15. These data emphasize the role of EGF repeats 11 to 12 in ligand binding. One of the mAbs, 602.101, which specifically recognizes Notch1, inhibited ligand-dependent expression of downstream target genes of Notch such as HES-1, HES-5, and HEY-L in the breast cancer cell line MDA-MB-231. The mAb also decreased cell proliferation and induced apoptotic cell death. Furthermore, exposure to this antibody reduced CD44(Hi)/CD24(Low) subpopulation in MDA-MB-231 cells, suggesting a decrease in the cancer stem-like cell subpopulation. This was confirmed by showing that exposure to the antibody decreased the primary, secondary, and tertiary mammosphere formation efficiency of the cells. Interestingly, effect of the antibody on the putative stem-like cells appeared to be irreversible, because the mammosphere-forming efficiency could not be salvaged even after antibody removal during the secondary sphere formation. The antibody also modulated expression of genes associated with stemness and epithelial-mesenchymal transition. Thus, targeting individual Notch receptors by specific mAbs is a potential therapeutic strategy to reduce the potential breast cancer stem-like cell subpopulation. Mol Cancer Ther; 11(1); 77-86. (C) 2011 AACR.
Resumo:
Hepatitis C virus (HCV), a member of Flaviviridae, encoding a positive-sense single-stranded RNA translates by cap-independent mechanism using the internal ribosome entry site (IRES) present in the 5' UTR of the virus. The IRES has complex stem loop structures and is capable of recruiting the 40S ribosomal subunit in a factor-independent fashion. As the IRES sequence is highly conserved throughout the HCV genotypes and the translation is the first obligatory step of the HCV life cycle, the IRE'S-mediated translation, or more specifically, the ribosome HCV RNA interaction is an attractive target to design effective antivirals. This article will focus on the mechanism of the HCV IRES translation and the various ways in which the interaction of ribosome and IRES has been targeted.