936 resultados para Implant removal
Resumo:
Nitrate from agricultural runoff are a significant cause of algal blooms in estuarine ecosystems such as the Chesapeake Bay. These blooms block sunlight vital to submerged aquatic vegetation, leading to hypoxic areas. Natural and constructed wetlands have been shown to reduce the amount of nitrate flowing into adjacent bodies of water. We tested three wetland plant species native to Maryland, Typha latifolia (cattail), Panicum virgatum (switchgrass), and Schoenoplectus validus (soft-stem bulrush), in wetland microcosms to determine the effect of species combination and organic amendment on nitrate removal. In the first phase of our study, we found that microcosms containing sawdust exhibited significantly greater nitrate removal than microcosms amended with glucose or hay at a low nitrate loading rate. In the second phase of our study, we confirmed that combining these plants removed nitrate, although no one combination was significantly better. Furthermore, the above-ground biomass of microcosms containing switchgrass had a significantly greater percentage of carbon than microcosms without switchgrass, which can be studied for potential biofuel use. Based on our data, future environmental groups can make a more informed decision when choosing biofuel-capable plant species for artificial wetlands native to the Chesapeake Bay Watershed.
Resumo:
Biogas is a mixture of methane and other gases. In its crude state, it contains carbon dioxide (CO2) that reduces its energy efficiency and hydrogen sulfide (H2S) that is toxic and highly corrosive. Because chemical methods of removal are expensive and environmentally hazardous, this project investigated an algal-based system to remove CO2 from biogas. An anaerobic digester was used to mimic landfill biogas. Iron oxide and an alkaline spray were used to remove H2S and CO2 respectively. The CO2-laden alkali solution was added to a helical photobioreactor where the algae metabolized the dissolved CO2 to generate algal biomass. Although technical issues prevented testing of the complete system for functionality, cost analysis was completed and showed that the system, in its current state, is not economically feasible. However, modifications may reduce operation costs.
Resumo:
This paper studies two models of two-stage processing with no-wait in process. The first model is the two-machine flow shop, and the other is the assembly model. For both models we consider the problem of minimizing the makespan, provided that the setup and removal times are separated from the processing times. Each of these scheduling problems is reduced to the Traveling Salesman Problem (TSP). We show that, in general, the assembly problem is NP-hard in the strong sense. On the other hand, the two-machine flow shop problem reduces to the Gilmore-Gomory TSP, and is solvable in polynomial time. The same holds for the assembly problem under some reasonable assumptions. Using these and existing results, we provide a complete complexity classification of the relevant two-stage no-wait scheduling models.
Resumo:
A series of poly(N-isopropylacrylamide) [pNIPAM]-based homo-polymer and co-polymer microgel particles were prepared by surfactant-free emulsion polymerisation. The co-monomers were acrylic acid. 4-vinylpyridine. butyl acrylate, 4-vinylbiphenyl and vinyl laurate. Co-monomers were added at a concentration of 10% (w/w) relative to the base monomer pNIPAM for the preparation of each co-polymer microgel. The co-monomers chosen vary by their organic chain length, polarity and pH sensitivity, as these should influence how the particles behave in aqueous and non-aqueous solvents. The effect of adding different types of co-monomer into the microgel structure was investigated with respect to their dispersibility in different solvents. These microgel particles have shown useful application in the removal of water from biodiesel prepared from rape seed. Karl Fischer experiments showed that microgel particles can be used to reduce the water content in biodiesel to an acceptable level for incorporation into internal combustion engines. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this investigation was to examine the proposition that creosote, emplaced in an initially water saturated porous system, can be removed from the system through Pickering emulsion formation. Pickering emulsions are dispersions of two immiscible fluids in which coalescence of the dispersed phase droplets is hindered by the presence of colloidal particles adsorbed at the interface between the two immiscible fluid phases. Particle trapping is strongly favoured when the wetting properties of the particles are intermediate between strong water wetting and strong oil wetting. In this investigation the necessary chemical conditions for the formation of physically stable creosote-in-water emulsions protected against coalescence by bentonite particles were examined. It was established that physically stable emulsions could be formed through the judicious addition of small amounts of sodium chloride and the surfactant cetyl-trimethylammonium bromide. The stability of the emulsions was initially established by visual inspection. However, experimental determinations of emulsion stability were also undertaken by use of oscillatory rheology. Measurements of the elastic and viscous responses to shear indicated that physically stable emulsions were obtained when the viscoelastic systems showed a predominantly elastic response to shearing. Once the conditions were established for the formation of physically stable emulsions a "proof-of-concept" chromatographic experiment was carried out which showed that creosote could be successfully removed from a saturated model porous system. (C) 2007 Elsevier Ltd. All rights reserved.