997 resultados para Immediate functional loading
Resumo:
GH actions are dependent on receptor dimerization. The GH receptor antagonist, B2036-PEG, has been developed for treating acromegaly. B2036 has mutations in site 1 to enhance receptor binding and in site 2 to block receptor dimerization. Pegylation (B2036-PEG) increases half-life and lowers immunogenicity, but high concentrations are required to control insulin-like growth factor-I levels. We examined antagonist structure and function and the impact of pegylation on biological efficacy. Unpegylated B2036 had a 4.5-fold greater affinity for GH binding protein (GHBP) than GH but similar affinity for membrane receptor. Pegylation substantially reduced membrane binding affinity and receptor antagonism, as assessed by a transcription assay, by 39- and 20-fold, respectively. GHBP reduced antagonist activity of unpegylated B2036 but did not effect antagonism by B2036-PEG. B2036 down-regulated receptors, and membrane binding sites doubled in the presence of dimerization-blocking antibodies, suggesting that B2036 binds to a receptor dimer. It is concluded that the high concentration requirement of B2036-PEG for clinical efficacy relates to pegylation, which decreases binding to membrane receptor but has the advantages of reduced clearance, immunogenicity, and interactions with GHBP. Our studies suggest that B2036 binds to a receptor dimer and induces internalization but not signaling.
Resumo:
Different sites of plasma membrane attachment may underlie functional differences between isoforms of Ras. Here we show that palmitoylation and farnesylation targets H-ras to lipid rafts and caveolae, but that the interaction of H-ras with these membrane subdomains is dynamic. GTP-loading redistributes H-ras from rafts into bulk plasma membrane by a mechanism that requires the adjacent hypervariable region of H-ras. Release of H-ras-GTP from rafts is necessary for efficient activation of Raf. By contrast, K-ras is located outside rafts irrespective of bound nucleotide. Our studies identify a novel protein determinant that is required for H-ras function, and show that the GTP/GDP state of H-ras determines its lateral segregation on the plasma membrane.
Resumo:
To discover the developmental relationship between the auditory brainstem response (ABR) and the focal inferior colliculus (IC) response, 32 young tammar wallabies were used, by the application of simultaneous ABR and focal brainstem recordings, in response to acoustic clicks and tone bursts of seven frequencies. The ic or the tammar wallaby undergoes a rapid functional development from postnatal day (PND) 114 to 160. The earliest (PND 114) auditory evoked response was recorded from the rostral IC. With development, more caudal parts of the IC became functional until age about PND 127, when all parts of the IC were responsive to sound. Along a dorsoventral direction, the duration of the IC response decreased, the peak latency shortened, while the amplitude increased, reaching a maximum value at the central IC, then decreased. After PND 160, the best frequency (BF) of the ventral IC was the highest, with values between 12.5 and 16 kHz, the BF of the dorsal IC was the lowest, varying between 3.2 and 6.4 kHz, while the BF of the central IC was between 6.4 and 12.5 kHz. Between PND 114 and 125, the IC response did not have temporal correlation with the ABR. Between PND 140 and 160, only the early components of the responses from the ventral and central IC correlated with the P4 waves of the ABR. After PND 160, responses recorded from different depths of the IC had a temporal correlation with the ABR. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Tapasin is critical for efficient loading and surface expression of most HLA class I molecules. The high level surface expression of HLA-B*2705 on tapasin-deficient 721.220 cells allowed the influence of this chaperone on peptide repertoire to be examined. Comparison of peptides bound to HLA-B*2705 expressed on tapasin-deficient and -proficient cells by mass spectrometry revealed an overall reduction in the recovery of B*2705-bound peptides isolated from tapasin-deficient cells despite similar yields of B27 heavy chain and beta (2)-microglobulin. This indicated that a proportion of suboptimal ligands were associated with B27, and they were lost during the purification process. Notwithstanding this failure to recover these suboptimal peptides, there was substantial overlap in the repertoire and biochemical properties of peptides recovered from B27 complexes derived from tapasin-positive and -negative cells. Although many peptides were preferentially or uniquely isolated from B*2705 in tapasin-positive cells, a number of species were preferentially recovered in the absence of tapasin, and some of these peptide ligands have been sequenced. In general, these ligands did not exhibit exceptional binding affinity, and we invoke an argument based on lumenal availability and affinity to explain their tapasin independence. The differential display of peptides in tapasin-negative and -positive cells was also apparent in the reactivity of peptide-sensitive alloreactive CTL raised against tapasin-positive and -negative targets, demonstrating the functional relevance of the biochemical observation of changes in peptide repertoire in the tapasin-deficient APC. Overall, the data reveal that tapasin quantitatively and qualitatively influences ligand selection by class I molecules.
Resumo:
Epithelial ovarian carcinoma is often diagnosed at an advanced stage of disease and is the leading cause of death from gynaecological neoplasia. The genetic changes that occur during the development of this carcinoma are poorly understood. It has been proposed that IGFIIR, TGF beta1 and TGF beta RII act as a functional unit in the TGF beta growth inhibitory pathway, and that somatic loss-of-function mutations in any one of these genes could lead to disruption of the pathway and subsequent loss of cell cycle control. We have examined these 3 genes in 25 epithelial ovarian carcinomas using single-stranded conformational polymorphism analysis and DNA sequence analysis. A total of 3 somatic missense mutations were found in the TGF beta RII gene, but none in IGFRII or TGF beta1. An association was found between TGF beta RII mutations and histology, with 2 out of 3 clear cell carcinomas having TGF beta RII mutations. This data supports other evidence from mutational analysis of the PTEN and beta -catenin genes that there are distinct developmental pathways responsible for the progression of different epithelial ovarian cancer histologic subtypes. (C) 2001 Cancer Research Campaign.
Resumo:
This study evaluated the effectiveness of a teacher-implemented intervention package designed to replace prelinguistic behaviors with functional communication. Four young children with autism participated in a multiple-probe design across three communicative functions. Initially, three existing communication functions were selected for each child. Next, the existing prelinguistic behaviors that the children used to achieve these functions were identified. Replacement forms that were considered more recognizable and symbolic were defined to achieve these same functions. After a baseline phase, teachers received inservice training, consultation, and feedback on how to encourage, acknowledge, and respond to the replacement forms. During intervention, the replacement forms increased and prelinguistic behaviors decreased in most cases. The results suggested that the teacher-implemented intervention was effective in replacing prelinguistic behaviors with alternative forms of functional communication.
Resumo:
The physiological and structural deficits contributing to swallowing complications in the pharyngolaryngectomy patient population are not homogeneous. Consequently, a team approach, involving medical investigations as well as clinical and radiological assessments of swallowing, is necessary to facilitate diagnosis of the underlying impairment and assist the medical/surgical and speech pathology team members in the process of individualizing the management plan for each patient. In the present study, the clinical assessment and management of eight pharyngolaryngectomy patients who presented with a decline in swallowing function unrelated to immediate postsurgical effects or direct effects of radiotherapy are reported. Clinical and radiological investigations revealed a heterogeneous group of factors contributing to their swallowing impairments and disability levels, including difficulty with graft and anastomotic patency and graft motility, impaired lingual coordination, increased bolus transit time, nasal and oral regurgitation, patient distress, and recurrence. Variation between the cases supported the need for differential intervention and management plans for all eight patients. Ratings of perceived swallowing disability, handicap, and well-being/distress levels at initial assessment and again six months following dysphagia intervention revealed a pattern of reduced levels of impairment, functional disability, and overall patient distress levels following informed intervention. The present case study data highlights the key role thorough clinical and radiological investigations play in the process of diagnosing the factors contributing to dysphagia and guiding the management of the resultant swallowing disability in the pharyngolaryngectomy population.
Resumo:
The basic morphology of the skeleton is determined genetically, but its final mass and architecture are modulated by adaptive mechanisms sensitive to mechanical factors. When subjected to loading, the ability of bones to resist fracture depends on their mass, material properties, geometry and tissue quality. The contribution of altered bone geometry to fracture risk is unappreciated by clinical assessment using absorptiometry because it fails to distinguish geometry and density. For example, for the same bone area and density, small increases in the diaphyseal radius effect a disproportionate influence on torsional strength of bone. Mechanical factors are clinically relevant because of their ability to influence growth, modeling and remodeling activities that can maximize, or maintain, the determinants of fracture resistance. Mechanical loads, greater than those habitually encountered by the skeleton, effect adaptations in cortical and cancellous bone, reduce the rate of bone turnover, and activate new bone formation on cortical and trabecular surfaces. In doing so, they increase bone strength by beneficial adaptations in the geometric dimensions and material properties of the tissue. There is no direct evidence to demonstrate anti-fracture efficacy for mechanical loading, but the geometric alterations engendered undoubtedly increase the structural properties of bone as an organ, increasing the resistance to fracture. Like all interventions, issues of safety also arise. Physical activities involving high strain rates, heavy lifting or impact loading may be detrimental to the joints, leading to osteoarthritis; may stimulate fatigue damage leading with some to stress fractures; or may interact pharmaceutical interventions to increase the rate of microdamage within cortical or trabecular bone.
Resumo:
The Lewis dwarf (DW) rat was used as a model to test the hypothesis that growth hormone (GH) is permissive for new bone formation induced by mechanical loading in vivo. Adult female Lewis DW rats aged 6.2 +/- 0.1 months (187 +/- 18 g) were allocated to four vehicle groups (DW), four GH treatment groups at 32.5 mug/100 g body mass (DWGH1), and four GH treatment groups at 65 mug/100 g (DWGH2). Saline vehicle or GH was injected intraperitoneally (ip) at 6:30 p.m. and 6:30 a.m. before mechanical loading of tibias at 7:30 a.m. A single period of 300 cycles of four-point bending was applied to right tibias at 2.0 Hz, and magnitudes of 24, 29, 38, or 48N were applied. Separate strain gauge analyses in 5 DW rats validated the selection of loading magnitudes. After loading, double-label histomorphometry was used to assess bone formation at the periosteal surface (Ps.S) and endocortical surface (Ec.S) of tibias. Comparing left (unloaded) tibias among groups, GH treatment had no effect on bone formation. Bone formation in tibias in DW rats was insensitive to mechanical loading. At the Ec.S, mechanically induced lamellar bone formation increased in the DWGH2 group loaded at 48N (p < 0.05), and no significant increases in bone formation were observed among other groups. The percentage of tibias expressing woven bone formation (Wo.B) at the Ps.S was significantly greater in the DWGH groups compared with controls (p < 0.05). We concluded that GH influences loading-related bone formation in a permissive manner and modulates the responsiveness of bone tissue to mechanical stimuli by changing thresholds for bone formation.
Resumo:
This study describes the rehabilitation length of stay (LOS), discharge destination and discharge functional status of 149 patients admitted with traumatic brain injury (TBI) to an Australian hospital over a 5-year period. Hospital charts of patients admitted between 1993-1998 were reviewed. Average LOS over the 5-year time period was 61.8 days and only decreased nominally over this time. Longer LOS was predicted by lower admission motor FIM scores and presence of comorbidities. Mean admission and discharge motor FIM scores were 58 and 79, which represented a gain of 21 points. Higher discharge motor FIM scores were predicted by higher admission motor FIM scores and younger age. FIM gain was predicted by cognitive status and age. Most patients, 88%, were discharged back to the community, with 30% changing their living setting or situation. Changing living status was predicted by living alone and having poorer functional status on admission.
Resumo:
Electromyographic (EMG) studies have shown that a large number of trunk muscles are recruited during axial rotation. The functional roles of these trunk muscles in axial rotation are multiple and have not been well investigated. In addition, there is no information on the coupling torque at different exertion levels during axial rotation. The aim of the study was to investigate the functional roles of rectus abdominis. external oblique. internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus during isometric right and left axial rotation at 100%, 70%, 50% and 30% maximum voluntary contractions (MVC) in a standing position. The coupling torques in sagittal and coronal planes were measured during axial rotation to examine the coupling nature of torque at different levels of exertions. Results showed that the coupled sagittal torque switches from nil to flexion at maximum exertion of axial rotation. Generally, higher EMG activities were shown at higher exertion levels for all the trunk muscles. Significant differences in activity between the right and left axial rotation exertions were demonstrated in external oblique, internal oblique, latissimus dorsi and iliocostalis lumborum while no difference was shown in rectus abdominis and multifidus. These results demonstrated the different functional roles of trunk muscles during axial rotation. This is important considering that the abdominal and back muscles not only produce torque but also maintain the spinal posture and stability during axial rotation exertions. The changing coupling torque direction in the sagittal plane when submaximal to maximal exertions were compared may indicate the complex nature of the kinetic coupling of trunk muscles. (C) 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The postural response to translation of the support surface may be influenced by the performance of an ongoing voluntary task. This study was designed to test this proposal by applying lateral perturbations while subjects handled a load in the frontal plane. Measurements were made of medio-lateral displacement of the centre of pressure, angular displacement of the trunk and thigh in the frontal plane and intra-abdominal pressure. Subjects were translated randomly to the left and right in a variety of conditions that involved standing either quietly or with a 5 kg load in their left hand, which they were required either to hold statically or to lift or lower. The results indicate that when the perturbation occurred towards the loaded left side the subjects were able to return their centre of pressure, trunk and thigh rapidly and accurately to the initial position. However, when the perturbation occurred towards the right (away from the load) this correction was delayed and associated with multiple changes in direction of movement, suggesting decreased efficiency of the postural response. This reduced efficiency can be explained by a conflict between the motor commands for the ongoing voluntary task and the postural response, and/or by the mechanical effect of the asymmetrical addition of load to the trunk.
Resumo:
The plasma membrane of differentiated skeletal muscle fibers comprises the sarcolemma, the transverse (T) tubule network, and the neuromuscular and muscle-tendon junctions. We analyzed the organization of these domains in relation to defined surface markers, beta -dystroglycan, dystrophin, and caveolin-3, These markers were shown to exhibit highly organized arrays along the length of the fiber. Caveolin-3 and beta -dystroglycan/dystrophin showed distinct, but to some extent overlapping, labeling patterns and both markers left transverse tubule openings clear. This labeling pattern revealed microdomains over the entire plasma membrane with the exception of the neuromuscular and muscle-tendon junctions which formed distinct demarcated macrodomains. Our results suggest that the entire plasma membrane of mature muscle comprises a mosaic of T tubule domains together with sareolemmal caveolae and beta -dystroglycan domains. The domains identified with these markers were examined with respect to targeting of viral proteins and other expressed domain-specific markers, We found that each marker protein was targeted to distinct microdomains, The macrodomains were intensely labeled with all our markers. Replacing the cytoplasmic tail of the vesicular stomatitis virus glycoprotein with that of CD4 resulted in retargeting from one domain to another. The domain-specific protein distribution at the muscle cell surface may be generated by targeting pathways requiring specific sorting information but this trafficking is different from the conventional apical-basolateral division. (C) 2001 Academic Press.
Resumo:
Objective. The aim of this study was to determine the function of primitive hematopoietic stem cells (PHSC) at phases G(0) and G(1) of the cell cycle. Materials and Methods. A combination of supravital dyes rhodamine123 (Rh), Hoechst33342 (Ho), and pyronin (PY) was used to isolate the G(0) and G(1) subsets of PHSC. A competitive repopulation assay was used to evaluate their in vivo function. Results. We confirmed that the Rh(lo)Lin(-)Kit(+)Sca-1(+) PHSC were relatively quiescent when compared with the more mature Rh(hi)Lin(-)Kit(+)Sca-1 HSC and Rh(hi)Lin(-)Kit(+)Sca-1(-) progenitors. In addition, cells with Rh(lo)Lin(-)Kit(+)Sca-1(+), Rh(lo)Ho(lo)Lin(-)Sca-1(+), or Rh(lo)Ho(sp)Lin(-)Sca-1(+) phenotypes identified the same cell population. We further subfractionated the Rh(lo)Ho(lo/sp)Lin(-)Sca-1(+) PHSC using PY into PYlo and PYhi subsets. Limiting dilution analysis revealed that the frequency of long-term in vivo competitive repopulating units (CRU) of the (PYRhHolo/sp)-Rh-lo-Ho-lo PHSC was 1 in 10 cells, whereas there was at least a three-fold lower frequency in those isolated at the G(1) phase (PYhi) We found a dose-dependent PY-mediated cytotoxicity that at moderate concentration affected most of the murine hematopoietic compartment but spared the early HSC compartment. Conclusion. Our data confirm that the HSC compartment is hierarchically ordered on the basis of quiescence and further extend this concept to PY-mediated cytotoxicity. PY supravital dye can be used to reveal functional heterogeneity within the (RhHolosp)-Ho-lo PHSC population but is of limited use in dissecting the relatively more mature hematopoietic stem/progenitor cell population. (C) 2001 International Society for Experimental Hematology. Published by Elsevier Science Inc.