687 resultados para Image inpainting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: EOS (EOS imaging S.A, Paris, France) is an x-ray imaging system that uses slot-scanning technology in order to optimize the trade-off between image quality and dose. The goal of this study was to characterize the EOS system in terms of occupational exposure, organ doses to patients as well as image quality for full spine examinations. METHODS: Occupational exposure was determined by measuring the ambient dose equivalents in the radiological room during a standard full spine examination. The patient dosimetry was performed using anthropomorphic phantoms representing an adolescent and a five-year-old child. The organ doses were measured with thermoluminescent detectors and then used to calculate effective doses. Patient exposure with EOS was then compared to dose levels reported for conventional radiological systems. Image quality was assessed in terms of spatial resolution and different noise contributions to evaluate the detector's performances of the system. The spatial-frequency signal transfer efficiency of the imaging system was quantified by the detective quantum efficiency (DQE). RESULTS: The use of a protective apron when the medical staff or parents have to stand near to the cubicle in the radiological room is recommended. The estimated effective dose to patients undergoing a full spine examination with the EOS system was 290μSv for an adult and 200 μSv for a child. MTF and NPS are nonisotropic, with higher values in the scanning direction; they are in addition energy-dependent, but scanning speed independent. The system was shown to be quantum-limited, with a maximum DQE of 13%. The relevance of the DQE for slot-scanning system has been addressed. CONCLUSIONS: As a summary, the estimated effective dose was 290μSv for an adult; the image quality remains comparable to conventional systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extended abstract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on a lossless data hiding scheme for digital images where the data hiding capacity is either determined by minimum acceptable subjective quality or by the demanded capacity. In the proposed method data is hidden within the image prediction errors, where the most well-known prediction algorithms such as the median edge detector (MED), gradient adjacent prediction (GAP) and Jiang prediction are tested for this purpose. In this method, first the histogram of the prediction errors of images are computed and then based on the required capacity or desired image quality, the prediction error values of frequencies larger than this capacity are shifted. The empty space created by such a shift is used for embedding the data. Experimental results show distinct superiority of the image prediction error histogram over the conventional image histogram itself, due to much narrower spectrum of the former over the latter. We have also devised an adaptive method for hiding data, where subjective quality is traded for data hiding capacity. Here the positive and negative error values are chosen such that the sum of their frequencies on the histogram is just above the given capacity or above a certain quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter presents a lossless data hiding scheme for digital images which uses an edge detector to locate plain areas for embedding. The proposed method takes advantage of the well-known gradient adjacent prediction utilized in image coding. In the suggested scheme, prediction errors and edge values are first computed and then, excluding the edge pixels, prediction error values are slightly modified through shifting the prediction errors to embed data. The aim of proposed scheme is to decrease the amount of modified pixels to improve transparency by keeping edge pixel values of the image. The experimental results have demonstrated that the proposed method is capable of hiding more secret data than the known techniques at the same PSNR, thus proving that using edge detector to locate plain areas for lossless data embedding can enhance the performance in terms of data embedding rate versus the PSNR of marked images with respect to original image.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: We examined one's own body image perception and its association with reported weight-related behavior among adolescents of a rapidly developing country in the African region. Methods: We conducted a school-based survey of 1432 students aged 11-17 years in the Seychelles. Weight and height were measured, and thinness, normal weight and overweight were assessed along standard criteria. A self-administered and anonymous questionnaire was administered. Perception of body image was assessed using both a closed-ended question (CEQ) and the Stunkard's pictorial silhouettes (SPS). Finally, a question assessed voluntary attempts to change weight. Results: Overall, 14.1% of the students were thin, 63.9% were normal-weight, and 22.0% were overweight or obese. There was fair agreement between actual weight status and self-perceived body image based on either CEQ or SPS. However, a substantial proportion of the overweight students did not consider themselves as overweight (SPS: 24%, CEQ: 34%) and, inversely, a substantial proportion of the normal-weight students considered themselves as too thin (SPS: 29%, CEQ: 15%). Among the overweight students, an adequate attempt to lose weight was reported more often by boys and girls who perceived themselves as overweight vs. not overweight (72-88% vs. 40-71%, p <0.05 for most comparisons). Among the normal-weight students, an inadequate attempt to gain weight was reported more often by boys and girls who perceived themselves as thin vs. not thin (27-68% vs. 11-19%, p <0.05). Girls had leaner own body ideals than boys. Conclusions: We found that substantial proportions of overweight students did not perceive themselves as overweight and/or did not want to lose weight and, inversely, that many normalweight students perceived themselves as too thin and/or wanted to gain weight: this points to forces that can drive the upwards overweight trends. Appropriate perception of one's weight was associated with adequate weight-control behavior, although not strongly, emphasizing that appropriate weight perception is only one of several factors driving adequate weight-related behavior. These findings emphasize the need to address appropriate perception of one's own weight and adequate weight-related behavior in adolescents for both individual and community weight-related interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image filtering is a highly demanded approach of image enhancement in digital imaging systems design. It is widely used in television and camera design technologies to improve the quality of an output image to avoid various problems such as image blurring problem thatgains importance in design of displays of large sizes and design of digital cameras. This thesis proposes a new image filtering method basedon visual characteristics of human eye such as MTF. In contrast to the traditional filtering methods based on human visual characteristics this thesis takes into account the anisotropy of the human eye vision. The proposed method is based on laboratory measurements of the human eye MTF and takes into account degradation of the image by the latter. This method improves an image in the way it will be degraded by human eye MTF to give perception of the original image quality. This thesis gives a basic understanding of an image filtering approach and the concept of MTF and describes an algorithm to perform an image enhancement based on MTF of human eye. Performed experiments have shown quite good results according to human evaluation. Suggestions to improve the algorithm are also given for the future improvements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study is to determine the level of correlation between the 3-dimensional (3D) characteristics of trabecular bone microarchitecture, as evaluated using microcomputed tomography (μCT) reconstruction, and trabecular bone score (TBS), as evaluated using 2D projection images directly derived from 3D μCT reconstruction (TBSμCT). Moreover, we have evaluated the effects of image degradation (resolution and noise) and X-ray energy of projection on these correlations. Thirty human cadaveric vertebrae were acquired on a microscanner at an isotropic resolution of 93μm. The 3D microarchitecture parameters were obtained using MicroView (GE Healthcare, Wauwatosa, MI). The 2D projections of these 3D models were generated using the Beer-Lambert law at different X-ray energies. Degradation of image resolution was simulated (from 93 to 1488μm). Relationships between 3D microarchitecture parameters and TBSμCT at different resolutions were evaluated using linear regression analysis. Significant correlations were observed between TBSμCT and 3D microarchitecture parameters, regardless of the resolution. Correlations were detected that were strongly to intermediately positive for connectivity density (0.711≤r(2)≤0.752) and trabecular number (0.584≤r(2)≤0.648) and negative for trabecular space (-0.407 ≤r(2)≤-0.491), up to a pixel size of 1023μm. In addition, TBSμCT values were strongly correlated between each other (0.77≤r(2)≤0.96). Study results show that the correlations between TBSμCT at 93μm and 3D microarchitecture parameters are weakly impacted by the degradation of image resolution and the presence of noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topic of this thesis is studying how lesions in retina caused by diabetic retinopathy can be detected from color fundus images by using machine vision methods. Methods for equalizing uneven illumination in fundus images, detecting regions of poor image quality due toinadequate illumination, and recognizing abnormal lesions were developed duringthe work. The developed methods exploit mainly the color information and simpleshape features to detect lesions. In addition, a graphical tool for collecting lesion data was developed. The tool was used by an ophthalmologist who marked lesions in the images to help method development and evaluation. The tool is a general purpose one, and thus it is possible to reuse the tool in similar projects.The developed methods were tested with a separate test set of 128 color fundus images. From test results it was calculated how accurately methods classify abnormal funduses as abnormal (sensitivity) and healthy funduses as normal (specificity). The sensitivity values were 92% for hemorrhages, 73% for red small dots (microaneurysms and small hemorrhages), and 77% for exudates (hard and soft exudates). The specificity values were 75% for hemorrhages, 70% for red small dots, and 50% for exudates. Thus, the developed methods detected hemorrhages accurately and microaneurysms and exudates moderately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the evaluation results of the methods submitted to Challenge US: Biometric Measurements from Fetal Ultrasound Images, a segmentation challenge held at the IEEE International Symposium on Biomedical Imaging 2012. The challenge was set to compare and evaluate current fetal ultrasound image segmentation methods. It consisted of automatically segmenting fetal anatomical structures to measure standard obstetric biometric parameters, from 2D fetal ultrasound images taken on fetuses at different gestational ages (21 weeks, 28 weeks, and 33 weeks) and with varying image quality to reflect data encountered in real clinical environments. Four independent sub-challenges were proposed, according to the objects of interest measured in clinical practice: abdomen, head, femur, and whole fetus. Five teams participated in the head sub-challenge and two teams in the femur sub-challenge, including one team who tackled both. Nobody attempted the abdomen and whole fetus sub-challenges. The challenge goals were two-fold and the participants were asked to submit the segmentation results as well as the measurements derived from the segmented objects. Extensive quantitative (region-based, distance-based, and Bland-Altman measurements) and qualitative evaluation was performed to compare the results from a representative selection of current methods submitted to the challenge. Several experts (three for the head sub-challenge and two for the femur sub-challenge), with different degrees of expertise, manually delineated the objects of interest to define the ground truth used within the evaluation framework. For the head sub-challenge, several groups produced results that could be potentially used in clinical settings, with comparable performance to manual delineations. The femur sub-challenge had inferior performance to the head sub-challenge due to the fact that it is a harder segmentation problem and that the techniques presented relied more on the femur's appearance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel image classification scheme for benthic coral reef images that can be applied to both single image and composite mosaic datasets. The proposed method can be configured to the characteristics (e.g., the size of the dataset, number of classes, resolution of the samples, color information availability, class types, etc.) of individual datasets. The proposed method uses completed local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent angle and hue channel color histograms as feature descriptors. For classification, either k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or probability density weighted mean distance (PDWMD) is used. The combination of features and classifiers that attains the best results is presented together with the guidelines for selection. The accuracy and efficiency of our proposed method are compared with other state-of-the-art techniques using three benthic and three texture datasets. The proposed method achieves the highest overall classification accuracy of any of the tested methods and has moderate execution time. Finally, the proposed classification scheme is applied to a large-scale image mosaic of the Red Sea to create a completely classified thematic map of the reef benthos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential X-ray phase-contrast tomography (DPCT) refers to a class of promising methods for reconstructing the X-ray refractive index distribution of materials that present weak X-ray absorption contrast. The tomographic projection data in DPCT, from which an estimate of the refractive index distribution is reconstructed, correspond to one-dimensional (1D) derivatives of the two-dimensional (2D) Radon transform of the refractive index distribution. There is an important need for the development of iterative image reconstruction methods for DPCT that can yield useful images from few-view projection data, thereby mitigating the long data-acquisition times and large radiation doses associated with use of analytic reconstruction methods. In this work, we analyze the numerical and statistical properties of two classes of discrete imaging models that form the basis for iterative image reconstruction in DPCT. We also investigate the use of one of the models with a modern image reconstruction algorithm for performing few-view image reconstruction of a tissue specimen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän tutkimuksen tavoitteena oli selvittää, vaikuttaako kansainvälisen opiskelijan kulttuuritausta opiskelijan odotetun ja koetun yliopistoimagon muodostumiseen. Jotta kulttuurin vaikutuksia yliopistoimagoon voitiin tutkia, tutkimuksessa tunnistettiin yliopistoimagon muodostumiseen oleellisesti vaikuttavat tekijät. Kulttuurin roolia organisaation imagon muodostumisessa ei ole tutkittu aiemmissa tieteellisissä julkaisuissa. Näin ollen tämän tutkimuksen voidaan katsoa edistäneen nykyistä imagotutkimusta. Tutkimuksen kohdeyliopistona oli Lappeenrannan teknillinen yliopisto (LTY). Tutkimuksen empiirinen osa toteutettiin kvantitatiivisena Internet - pohjaisena kyselytutkimuksena tilastollisen analyysin menetelmin. Otos (N=179) koostui kaikista Lappeenrannan teknillisessä yliopistossa lukuvuonna 2005-2006 opiskelleista kansainvälisistä opiskelijoista. Kyselyyn vastasi 68,7 % opiskelijoista. Johtopäätöksenä voidaan todeta, että kulttuurilla ei ole merkittävää vaikutusta yliopistoimagon muodostumiseen. Tutkimuksessa saatiin selville, että yliopiston Internet-sivujen laatu vaikuttaa positiivisesti odotetun yliopistoimagon muodostumiseen, kun taas koettuun yliopistoimagoon vaikuttavat positiivisesti odotettu yliopistoimago, pedagoginen laatu sekä opetusympäristö. Markkinoinnin näkökulmasta tulokset voidaan vetää yhteen toteamalla, että yliopistojen ei tarvitsisi räätälöidä tutkimuksessa tunnistettuja imagoon vaikuttavia tekijöitä eri kulttuureistatulevia opiskelijoita varten.