888 resultados para INCREASES PROLIFERATION
Resumo:
The performance of the Xpert MRSA polymerase chain reaction (PCR) assay on pooled nose, groin, and throat swabs (three nylon flocked eSwabs into one tube) was compared to culture by analyzing 5,546 samples. The sensitivity [0.78, 95 % confidence interval (CI) 0.73-0.82] and specificity (0.99, 95 % CI 0.98-0.99) were similar to the results from published studies on separated nose or other specimens. Thus, the performance of the Xpert MRSA assay was not affected by pooling the three specimens into one assay, allowing a higher detection rate without increasing laboratory costs, as compared to nose samples alone.
Resumo:
Brain natriuretic peptide (BNP) contributes to heart formation during embryogenesis. After birth, despite a high number of studies aimed at understanding by which mechanism(s) BNP reduces myocardial ischemic injury in animal models, the actual role of this peptide in the heart remains elusive. In this study, we asked whether BNP treatment could modulate the proliferation of endogenous cardiac progenitor cells (CPCs) and/or their differentiation into cardiomyocytes. CPCs expressed the NPR-A and NPR-B receptors in neonatal and adult hearts, suggesting their ability to respond to BNP stimulation. BNP injection into neonatal and adult unmanipulated mice increased the number of newly formed cardiomyocytes (neonatal: +23 %, p = 0.009 and adult: +68 %, p = 0.0005) and the number of proliferating CPCs (neonatal: +142 %, p = 0.002 and adult: +134 %, p = 0.04). In vitro, BNP stimulated CPC proliferation via NPR-A and CPC differentiation into cardiomyocytes via NPR-B. Finally, as BNP might be used as a therapeutic agent, we injected BNP into mice undergoing myocardial infarction. In pathological conditions, BNP treatment was cardioprotective by increasing heart contractility and reducing cardiac remodelling. At the cellular level, BNP stimulates CPC proliferation in the non-infarcted area of the infarcted hearts. In the infarcted area, BNP modulates the fate of the endogenous CPCs but also of the infiltrating CD45(+) cells. These results support for the first time a key role for BNP in controlling the progenitor cell proliferation and differentiation after birth. The administration of BNP might, therefore, be a useful component of therapeutic approaches aimed at inducing heart regeneration.
Resumo:
Human Ag-specific CD8(+) T lymphocytes are heterogeneous and include functionally distinct populations. In this study, we report that at least two distinct mechanisms control the expansion of circulating naive, memory, and effector CD8(+) T lymphocytes when exposed to mitogen or Ag stimulation. The first one leads to apoptosis and occurs shortly after in vitro stimulation. Susceptibility to cell death is prominent among primed T cell subsets, and it is inversely correlated with the size of the ex vivo Bcl-2(high) population within these subsets. Importantly, the Bcl-2(high) phenotype is associated to the proportion of responsive CD8(+) T cells, independently of their differentiation stage. The second one depends on the expression of newly synthesized cyclin-dependent kinase inhibitor p16(INK4a) that occurs in a significant fraction of T cells that had been actively cycling, leading to their cell cycle arrest upon stimulation. Strikingly, accumulation of p16(INK4a) protein preferentially occurs in naive as opposed to primed derived T lymphocytes and is not related to apoptosis. Significant levels of p16 are readily detectable in a small number of ex vivo CD8(+) T cells. Our observations reveal that activation-induced p16 expression represents an alternative process to apoptosis, limiting the proliferation potential of activated naive derived T lymphocytes.
Resumo:
A successful bone tissue engineering strategy entails producing bone-scaffold constructs with adequate mechanical properties. Apart from the mechanical properties of the scaffold itself, the forming bone inside the scaffold also adds to the strength of the construct. In this study, we investigated the role of in vivo cyclic loading on mechanical properties of a bone scaffold. We implanted PLA/β-TCP scaffolds in the distal femur of six rats, applied external cyclic loading on the right leg, and kept the left leg as a control. We monitored bone formation at 7 time points over 35 weeks using time-lapsed micro-computed tomography (CT) imaging. The images were then used to construct micro-finite element models of bone-scaffold constructs, with which we estimated the stiffness for each sample at all time points. We found that loading increased the stiffness by 60% at 35 weeks. The increase of stiffness was correlated to an increase in bone volume fraction of 18% in the loaded scaffold compared to control scaffold. These changes in volume fraction and related stiffness in the bone scaffold are regulated by two independent processes, bone formation and bone resorption. Using time-lapsed micro-CT imaging and a newly-developed longitudinal image registration technique, we observed that mechanical stimulation increases the bone formation rate during 4-10 weeks, and decreases the bone resorption rate during 9-18 weeks post-operatively. For the first time, we report that in vivo cyclic loading increases mechanical properties of the scaffold by increasing the bone formation rate and decreasing the bone resorption rate.
Resumo:
BACKGROUND: RalA and RalB are multifuntional GTPases involved in a variety of cellular processes including proliferation, oncogenic transformation and membrane trafficking. Here we investigated the mechanisms leading to activation of Ral proteins in pancreatic beta-cells and analyzed the impact on different steps of the insulin-secretory process. METHODOLOGY/PRINCIPAL FINDINGS: We found that RalA is the predominant isoform expressed in pancreatic islets and insulin-secreting cell lines. Silencing of this GTPase in INS-1E cells by RNA interference led to a decrease in secretagogue-induced insulin release. Real-time measurements by fluorescence resonance energy transfer revealed that RalA activation in response to secretagogues occurs within 3-5 min and reaches a plateau after 10-15 min. The activation of the GTPase is triggered by increases in intracellular Ca2+ and cAMP and is prevented by the L-type voltage-gated Ca2+ channel blocker Nifedipine and by the protein kinase A inhibitor H89. Defective insulin release in cells lacking RalA is associated with a decrease in the secretory granules docked at the plasma membrane detected by Total Internal Reflection Fluorescence microscopy and with a strong impairment in Phospholipase D1 activation in response to secretagogues. RalA was found to be activated by RalGDS and to be severely hampered upon silencing of this GDP/GTP exchange factor. Accordingly, INS-1E cells lacking RalGDS displayed a reduction in hormone secretion induced by secretagogues and in the number of insulin-containing granules docked at the plasma membrane. CONCLUSIONS/SIGNIFICANCE: Taken together, our data indicate that RalA activation elicited by the exchange factor RalGDS in response to a rise in intracellular Ca2+ and cAMP controls hormone release from pancreatic beta-cell by coordinating the execution of different events in the secretory pathway.
Resumo:
In vitro studies suggested that sub-millisecond pulses of radiation elicit less genomic instability than continuous, protracted irradiation at the same total dose. To determine the potential of ultrahigh dose-rate irradiation in radiotherapy, we investigated lung fibrogenesis in C57BL/6J mice exposed either to short pulses (≤ 500 ms) of radiation delivered at ultrahigh dose rate (≥ 40 Gy/s, FLASH) or to conventional dose-rate irradiation (≤ 0.03 Gy/s, CONV) in single doses. The growth of human HBCx-12A and HEp-2 tumor xenografts in nude mice and syngeneic TC-1 Luc(+) orthotopic lung tumors in C57BL/6J mice was monitored under similar radiation conditions. CONV (15 Gy) triggered lung fibrosis associated with activation of the TGF-β (transforming growth factor-β) cascade, whereas no complications developed after doses of FLASH below 20 Gy for more than 36 weeks after irradiation. FLASH irradiation also spared normal smooth muscle and epithelial cells from acute radiation-induced apoptosis, which could be reinduced by administration of systemic TNF-α (tumor necrosis factor-α) before irradiation. In contrast, FLASH was as efficient as CONV in the repression of tumor growth. Together, these results suggest that FLASH radiotherapy might allow complete eradication of lung tumors and reduce the occurrence and severity of early and late complications affecting normal tissue.
Resumo:
In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose, mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC. Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9 agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate during humoral immune response.
Resumo:
In conditions of T lymphopenia, interleukin (IL) 7 levels rise and, via T cell receptor for antigen-self-major histocompatibility complex (MHC) interaction, induce residual naive T cells to proliferate. This pattern of lymphopenia-induced "homeostatic" proliferation is typically quite slow and causes a gradual increase in total T cell numbers and differentiation into cells with features of memory cells. In contrast, we describe a novel form of homeostatic proliferation that occurs when naive T cells encounter raised levels of IL-2 and IL-15 in vivo. In this situation, CD8(+) T cells undergo massive expansion and rapid differentiation into effector cells, thus closely resembling the T cell response to foreign antigens. However, the responses induced by IL-2/IL-15 are not seen in MHC-deficient hosts, implying that the responses are driven by self-ligands. Hence, homeostatic proliferation of naive T cells can be either slow or fast, with the quality of the response to self being dictated by the particular cytokine (IL-7 vs. IL-2/IL-15) concerned. The relevance of the data to the gradual transition of naive T cells into memory-phenotype (MP) cells with age is discussed.
Resumo:
Purpose: Cardiac 18F-FDG PET is considered as the gold standard to assess myocardial metabolism and infarct size. The myocardial demand for glucose can be influenced by fasting and/or following pharmacological preparation. In the rat, it has been previously shown that fasting combined with preconditioning with acipimox, a nicotinic acid derivate and lipidlowering agent, increased dramatically 18F-FDG uptake in the myocardium. Strategies aimed at reducing infarct scar are evaluated in a variety of mouse models. PET would particularly useful for assessing cardiac viability in the mouse. However, prior knowledge of the best preparation protocol is a prerequisite for accurate measurement of glucose uptake in mice. Therefore, we studied the effect of different protocols on 18F-FDG uptake in the mouse heart.Methods: Mice (n = 15) were separated into three treatment groups according to preconditioning and underwent a 18FDG PET scan. Group 1: No preconditioning (n = 3); Group 2: Overnight fasting (n = 8); and Group 3: Overnight fasting and acipimox (25mg/kg SC) (n = 4). MicroPET images were processed with PMOD to determine 18F-FDG mean standard uptake value (SUV) at 30 min for the whole left ventricle (LV) and for each region of the 17-segments AHA model. For comparisons, we used Mann-Whitney test and multilevel mixed-effects linear regression (Stata 11.0).Results: In total, 27 microPET were performed successfully in 15 animals. Overnight fasting led to a dramatic increase in LV-SUV compared to mice without preconditioning (8.6±0.7g/mL vs. 3.7±1.1g/mL, P<0.001). In addition, LV-SUV was slightly but not significantly higher in animals treated with acipimox compared to animals with overnight fasting alone (10.2±0.5 g/mL, P = 0.06). Fastening increased segmental SUV by 5.1±0.5g/mL as compared to free-feeding mice (from 3.7±0.8g/mL to 8.8±0.4g/mL, P<0.001); segmental-SUV also significantly increased after administration of acipimox (from 8.8±0.4g/mL to 10.1±0.4g/mL, P<0.001).Conclusion: Overnight fasting led to myocardial glucose deprivation and increases 18F-FDG myocardial uptake. Additional administration of acipimox enhances myocardial 18F-FDG uptake, at least at the segmental level. Thus, preconditioning with acipimox may provide better image quality that may help for assessing segmental myocardial metabolism.
Resumo:
The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future.
Resumo:
Purpose: to describe a case of probable bilateral diffuse uveal melanocytic proliferation (BDUMP) with scleral involvement, free from systemic malignancies and cataract. Methods: fifty months of follow up with recurrent complete ophthalmological examinations, including fundus photography, fluorescein/indocyanine green angiography (FA) and optical coherence tomography (OCT). Investigations also included an electroretinography (ERG) and histological examination of scleral biopsy. Extraocular malignancies were repeatedly searched. Results: the patient was a 61 year-old Italian man with chronic hepatitis type C. At first visit his best corrected visual acuity (BCVA) was 20/32 in OS and 20/25 in OD. Funduscopy showed multiple patch-shaped pigmented alterations involving macular region and mid retinal periphery. FA showed corresponding areas of late-phase hyperfluorescent pinpoints (figure 1a, OS) and intemediate-phase hypocyanescence (figure 1b, OS), with subtle serous neurosensory retinal detachment confirmed by OCT. Photopic and scotopic ERG tested normal. Systemic prednisone was administered for one month without any improvement. After ten months round pigmentary lesions appeared also in superior scleral surface of both eyes. Biopsy allowed to disclose slightly pigmented spindle cells. BCVA worsened for further 10 months, with enlargement of FA alteration areas but lenses still clear. After 30 months spontaneous coalescence and atrophy of retinal lesions started, paralleled by progressive visual recovery. At the end of our follow up BCVA was 20/25 in OU while scleral pigmentary lesions remained unchanged. Conclusions: we report the case of a patient with main features of BDUMP and some unusual findings. Although not all classical diagnostic criteria were fulfilled, the presence of scleral pigmented lesions and spontaneous visual recovery may enlarge clinical spectrum of the disease.
Resumo:
A new culture model was developed to study the role of proliferation and apoptosis in the etiology of keloids. Fibroblasts were isolated from the superficial, central, and basal regions of six different keloid lesions by using Dulbecco's Modified Eagle Medium containing 10% fetal calf serum as a culture medium. The growth behavior of each fibroblast fraction was examined in short-term and long-term cultures, and the percentage of apoptotic cells was assessed by in situ end labeling of fragmented DNA. The fibroblasts obtained from the superficial and basal regions of keloid tissue showed population doubling times and saturation densities that were similar to those of age-matched normal fibroblasts. In contrast, the fibroblasts from the center of the keloid lesions showed significantly reduced doubling times (25.9 +/- 6.3 hours versus 43.5 +/- 6.3 hours for normal fibroblasts) and reached higher cell densities. In long-term culture, central keloid fibroblasts formed a stratified three-dimensional structure, contracted the self-produced extracellular matrix, and gave rise to nodular cell aggregates, mimicking the formation of keloid tissue. Apoptotic cells were detected in both normal and keloid-derived fibroblasts, but their numbers were twofold higher in normal cells compared with all keloid fibroblasts. To examine whether apoptosis mediates the therapeutic effect of ionizing radiation on keloids, the cells were exposed to gamma rays at a dose of 8 Gy. Under these conditions, a twofold increase in the population of apoptotic cells was detected. These results indicate that the balance between proliferation and apoptosis is impaired in keloid fibroblasts, which could be responsible for the formation of keloid tumors. The results also suggest that keloids contain at least two different fibroblast fractions that vary in growth behavior and extracellular matrix metabolism.
Resumo:
BACKGROUND: Retinal angiomatous proliferation (RAP) is a distinct variant of neovascular age-related macular degeneration (AMD). The aim of this study is to evaluate the functional and anatomic outcome after intravitreal ranibizumab (Lucentis) treatment in patients with RAP. METHODS: Prospective study of consecutive patients with newly diagnosed or recurrent RAP treated with intravitreal ranibizumab at the Jules Gonin Eye Hospital between March 2006 and December 2007. Baseline and monthly follow-up visits included best-corrected visual acuity (BCVA), fundus exam and optical coherence tomography. Fluorescein and indocyanine green angiography were performed at baseline and repeated at least every 3 months. RESULTS: Thirty-one eyes of 31 patients were treated with 0.5 mg of intravitreal ranibizumab for RAP between March 2006 and December 2007. The mean age of the patients was 82.6 years (SD:4.9). The mean number of intravitreal injections administered for each patient was 5 (SD: 2.4, range 3 to 12). The mean follow up was 13.4 months (SD: 3, range 10 to 22). The baseline mean logMAR BCVA was 0.72 (SD: 0.45) (decimal equivalent of 0.2). The mean logMAR BCVA was improved significantly (P < 0.0001) at the last follow-up to 0.45, SD: 0.3 (decimal equivalent 0.35). The visual acuity (VA) improved by a mean of 2.7 lines (SD 2.5). Mean baseline central macular thickness (CMT) was 376 microm, and decreased significantly to a mean of 224 microm (P < 0.001) at the last follow-up. Mean reduction of CMT was 152 microm (SD: 58). An average of 81.5% of the total visual improvement and 85% of the total CMT reduction occurred during the first post-operative month after one intravitreal injection of ranibizumab. During follow-up, an RPE tear occurred in one eye (3.2%) of the study group. No injection complications or systemic drug-related side-effects were noted during the follow-up period. CONCLUSIONS: Intravitreal ranibizumab injections appeared to be an effective and safe treatment for RAP, resulting in visual gain and reduction in macular thickness. Further long-term studies to evaluate the efficacy of intravitreal ranibizumab in RAP are warranted.