857 resultados para IEEE 802.11i
Resumo:
Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.
Resumo:
The increasing demand for Internet data traffic in wireless broadband access networks requires both the development of efficient, novel wireless broadband access technologies and the allocation of new spectrum bands for that purpose. The introduction of a great number of small cells in cellular networks allied to the complimentary adoption of Wireless Local Area Network (WLAN) technologies in unlicensed spectrum is one of the most promising concepts to attend this demand. One alternative is the aggregation of Industrial, Science and Medical (ISM) unlicensed spectrum to licensed bands, using wireless networks defined by Institute of Electrical and Electronics Engineers (IEEE) and Third Generation Partnership Project (3GPP). While IEEE 802.11 (Wi-Fi) networks are aggregated to Long Term Evolution (LTE) small cells via LTE / WLAN Aggregation (LWA), in proposals like Unlicensed LTE (LTE-U) and LWA the LTE air interface itself is used for transmission on the unlicensed band. Wi-Fi technology is widespread and operates in the same 5 GHz ISM spectrum bands as the LTE proposals, which may bring performance decrease due to the coexistence of both technologies in the same spectrum bands. Besides, there is the need to improve Wi-Fi operation to support scenarios with a large number of neighbor Overlapping Basic Subscriber Set (OBSS) networks, with a large number of Wi-Fi nodes (i.e. dense deployments). It is long known that the overall Wi-Fi performance falls sharply with the increase of Wi-Fi nodes sharing the channel, therefore there is the need for introducing mechanisms to increase its spectral efficiency. This work is dedicated to the study of coexistence between different wireless broadband access systems operating in the same unlicensed spectrum bands, and how to solve the coexistence problems via distributed coordination mechanisms. The problem of coexistence between different networks (i.e. LTE and Wi-Fi) and the problem of coexistence between different networks of the same technology (i.e. multiple Wi-Fi OBSSs) is analyzed both qualitatively and quantitatively via system-level simulations, and the main issues to be faced are identified from these results. From that, distributed coordination mechanisms are proposed and evaluated via system-level simulations, both for the inter-technology coexistence problem and intra-technology coexistence problem. Results indicate that the proposed solutions provide significant gains when compare to the situation without distributed coordination.
Resumo:
Nella società odierna, le telecomunicazioni costituiscono un’esigenza fondamentale della vita quotidiana. Difatti, il mercato della ICT (Information and Communications Technology) è in costante espansione, e viene accompagnato da un rapido sviluppo di nuove tecnologie. In particolare, si assiste a un sempre più rilevante ruolo svolto dalle comunicazioni ottiche, ovvero sfruttanti la luce: in questo contesto, il quale comprende diversi rami ingegneristici, si stanno progressivamente affermando nuove forme di comunicazione basate sulla luce visibile, la cosiddetta Visible Light Communication (VLC). Con questa Tesi ci si propone di implementare con Simulink e stateflow di Matlab il livello MAC (Medium Access Control), basato sullo standard IEEE 802.15.7 per le VLC e valutarne le prestazioni. Prescinde da questa Tesi la parte di implementazione su scheda stessa che è lasciata per sviluppi futuri. Nel capitolo uno si introducono le VLC e si discutono i principali scenari attuali dove possono diffondersi. Nel capitolo 2, si mostrano le principali linee guida afferenti agli standard che sono risultate necessarie per sviluppare lo strato MAC. Nei capitoli 3 e 4 si mostra come il layer sviluppato possa essere utilizzato in due principali situazioni: nel capitolo 3 è descritta la realizzazione di una comunicazione punto-punto, ovvero con un trasmettitore e un ricevitore; nel capitolo 4 è descritta l’implementazione di una rete di nodi, ambito in cui il livello MAC risulta indispensabile. Per ognuna delle situazioni si illustrano scelte e caratteristiche dei sistemi simulati e i risultati ottenuti, cercando di coprire diverse eventualità che intercorrono, più in generale, nella gestione e implementazione di sistemi di telecomunicazione wireless.
Resumo:
A CMOS vector-sum phase shifter covering the full 360° range is presented in this paper. Broadband operational transconductance amplifiers with variable transconductance provide coarse scaling of the quadrature vector amplitudes. Fine scaling of the amplitudes is accomplished using a passive resistive network. Expressions are derived to predict the maximum bit resolution of the phase shifter from the scaling factor of the coarse and fine vector-scaling stages. The phase shifter was designed and fabricated using the standard 130-nm CMOS process and was tested on-wafer over the frequency range of 4.9–5.9 GHz. The phase shifter delivers root mean square (rms) phase and amplitude errors of 1.25° and 0.7 dB, respectively, at the midband frequency of 5.4 GHz. The input and output return losses are both below 17 dB over the band, and the insertion loss is better than 4 dB over the band. The circuit uses an area of 0.303 mm2 excluding bonding pads and draws 28 mW from a 1.2 V supply.
Resumo:
Development of Internet-of-Services will be hampered by heterogeneous Internet-of-Things infrastructures, such as inconsistency in communicating with participating objects, connectivity between them, topology definition & data transfer, access via cloud computing for data storage etc. Our proposed solutions are applicable to a random topology scenario that allow establishing of multi-operational sensor networks out of single networks and/or single service networks with the participation of multiple networks; thus allowing virtual links to be created and resources to be shared. The designed layers are context-aware, application-oriented, and capable of representing physical objects to a management system, along with discovery of services. The reliability issue is addressed by deploying IETF supported IEEE 802.15.4 network model for low-rate wireless personal networks. Flow- sensor succeeded better results in comparison to the typical - sensor from reachability, throughput, energy consumption and diversity gain viewpoint and through allowing the multicast groups into maximum number, performances can be improved.
Resumo:
The wide adaptation of Internet Protocol (IP) as de facto protocol for most communication networks has established a need for developing IP capable data link layer protocol solutions for Machine to machine (M2M) and Internet of Things (IoT) networks. However, the wireless networks used for M2M and IoT applications usually lack the resources commonly associated with modern wireless communication networks. The existing IP capable data link layer solutions for wireless IoT networks provide the necessary overhead minimising and frame optimising features, but are often built to be compatible only with IPv6 and specific radio platforms. The objective of this thesis is to design IPv4 compatible data link layer for Netcontrol Oy's narrow band half-duplex packet data radio system. Based on extensive literature research, system modelling and solution concept testing, this thesis proposes the usage of tunslip protocol as the basis for the system data link layer protocol development. In addition to the functionality of tunslip, this thesis discusses the additional network, routing, compression, security and collision avoidance changes required to be made to the radio platform in order for it to be IP compatible while still being able to maintain the point-to-multipoint and multi-hop network characteristics. The data link layer design consists of the radio application, dynamic Maximum Transmission Unit (MTU) optimisation daemon and the tunslip interface. The proposed design uses tunslip for creating an IP capable data link protocol interface. The radio application receives data from tunslip and compresses the packets and uses the IP addressing information for radio network addressing and routing before forwarding the message to radio network. The dynamic MTU size optimisation daemon controls the tunslip interface maximum MTU size according to the link quality assessment calculated from the radio network diagnostic data received from the radio application. For determining the usability of tunslip as the basis for data link layer protocol, testing of the tunslip interface is conducted with both IEEE 802.15.4 radios and packet data radios. The test cases measure the radio network usability for User Datagram Protocol (UDP) based applications without applying any header or content compression. The test results for the packet data radios reveal that the typical success rate for packet reception through a single-hop link is above 99% with a round-trip-delay of 0.315s for 63B packets.
Resumo:
Contiene: Planificación de una red DVB-H en entorno urbano David Gómez Barquero, Ariana Salieto Alexis P. García, José F. Monserrat, Narcís Cardona Incorporación de la habilidad de coordinación y del módulo de personalización de sesiones al simulador de otorrinolaringología Wesst-OT Lina María Hurtado, Oscar Darío Ramírez Mauricio Castrillón S., Angélica María Ospina C. Francisco J. Herrera Botero Andrés A. Navarro Newball, Jorge A. Vélez Beltrán GenLeNa: Sistema para la construcción de Aplicaciones de Generación de Lenguaje Natural Gloria Johanna Chala T. Rafael Armando Jordán O. Diego Luis Linares Programación básica para adolescentes Guillermo Londoño Acosta Gustavo Adolfo Paz Loboguerrero Análisis de interferencia entre las tecnologías inalámbricas Bluetooth e IEEE 802.11g Fabio Guerrero Oliver Cardona Miguel Fuertes Teoría de Sistemas: Visión trascendental de Sistemas y Espiritualidad Ricardo Schnitzler
Resumo:
Nowadays there is a huge evolution in the technological world and in the wireless networks. The electronic devices have more capabilities and resources over the years, which makes the users more and more demanding. The necessity of being connected to the global world leads to the arising of wireless access points in the cities to provide internet access to the people in order to keep the constant interaction with the world. Vehicular networks arise to support safety related applications and to improve the traffic flow in the roads; however, nowadays they are also used to provide entertainment to the users present in the vehicles. The best way to increase the utilization of the vehicular networks is to give to the users what they want: a constant connection to the internet. Despite of all the advances in the vehicular networks, there were several issues to be solved. The presence of dedicated infrastructure to vehicular networks is not wide yet, which leads to the need of using the available Wi-Fi hotspots and the cellular networks as access networks. In order to make all the management of the mobility process and to keep the user’s connection and session active, a mobility protocol is needed. Taking into account the huge number of access points present at the range of a vehicle for example in a city, it will be beneficial to take advantage of all available resources in order to improve all the vehicular network, either to the users and to the operators. The concept of multihoming allows to take advantage of all available resources with multiple simultaneous connections. This dissertation has as objectives the integration of a mobility protocol, the Network-Proxy Mobile IPv6 protocol, with a host-multihoming per packet solution in order to increase the performance of the network by using more resources simultaneously, the support of multi-hop communications, either in IPv6 or IPv4, the capability of providing internet access to the users of the network, and the integration of the developed protocol in the vehicular environment, with the WAVE, Wi-Fi and cellular technologies. The performed tests focused on the multihoming features implemented on this dissertation, and on the IPv4 network access for the normal users. The obtained results show that the multihoming addition to the mobility protocol improves the network performance and provides a better resource management. Also, the results show the correct operation of the developed protocol in a vehicular environment.
Resumo:
Wireless sensor networks (WSNs) are the key enablers of the internet of things (IoT) paradigm. Traditionally, sensor network research has been to be unlike the internet, motivated by power and device constraints. The IETF 6LoWPAN draft standard changes this, defining how IPv6 packets can be efficiently transmitted over IEEE 802.15.4 radio links. Due to this 6LoWPAN technology, low power, low cost micro- controllers can be connected to the internet forming what is known as the wireless embedded internet. Another IETF recommendation, CoAP allows these devices to communicate interactively over the internet. The integration of such tiny, ubiquitous electronic devices to the internet enables interesting real-time applications. This thesis work attempts to evaluate the performance of a stack consisting of CoAP and 6LoWPAN over the IEEE 802.15.4 radio link using the Contiki OS and Cooja simulator, along with the CoAP framework Californium (Cf). Ultimately, the implementation of this stack on real hardware is carried out using a raspberry pi as a border router with T-mote sky sensors as slip radios and CoAP servers relaying temperature and humidity data. The reliability of the stack was also demonstrated during scalability analysis conducted on the physical deployment. The interoperability is ensured by connecting the WSN to the global internet using different hardware platforms supported by Contiki and without the use of specialized gateways commonly found in non IP based networks. This work therefore developed and demonstrated a heterogeneous wireless sensor network stack, which is IP based and conducted performance analysis of the stack, both in terms of simulations and real hardware.
Resumo:
The Wireless Sensor Networks (WSN) methods applied to the lifting of oil present as an area with growing demand technical and scientific in view of the optimizations that can be carried forward with existing processes. This dissertation has as main objective to present the development of embedded systems dedicated to a wireless sensor network based on IEEE 802.15.4, which applies the ZigBee protocol, between sensors, actuators and the PLC (Programmable Logic Controller), aiming to solve the present problems in the deployment and maintenance of the physical communication of current elevation oil units based on the method Plunger-Lift. Embedded systems developed for this application will be responsible for acquiring information from sensors and control actuators of the devices present at the well, and also, using the Modbus protocol to make this network becomes transparent to the PLC responsible for controlling the production and delivery information for supervisory SISAL
Resumo:
The large scale development of an Intelligent Transportation System is very close. The main component of such a smart environment is the network that provides connectivity for all vehicles. Public safety is the most demanding application because requires a fast, reliable and secure communication. Although IEEE 802.11p is presently the only full wireless standard for vehicular communications, recent advancements in 3GPP LTE provide support to direct communications and the ongoing activities are also addressing the vehicle to vehicle case. This thesis focuses on the resource allocation procedures and performance of LTE-V2V. To this aim, a MATLAB simulator has been implemented and results have been obtained adopting different mobility models for both in-coverage and out-of-coverage scenarios.
Resumo:
Mobile WiMAX is a burgeoning network technology with diverse applications, one of them being used for VANETs. The performance metrics such as Mean Throughput and Packet Loss Ratio for the operations of VANETs adopting 802.16e are computed through simulation techniques. Next we evaluated the similar performance of VANETs employing 802.11p, also known as WAVE (Wireless Access in Vehicular Environment). The simulation model proposed is close to reality as we have generated mobility traces for both the cases using a traffic simulator (SUMO), and fed it into network simulator (NS2) based on their operations in a typical urban scenario for VANETs. In sequel, a VANET application called `Street Congestion Alert' is developed to assess the performances of these two technologies. For this application, TraCI is used for coupling SUMO and NS2 in a feedback loop to set up a realistic simulation scenario. Our inferences show that the Mobile WiMAX performs better than WAVE for larger network sizes.
Resumo:
The performance of an RF output matching network is dependent on integrity of the ground connection. If this connection is compromised in anyway, additional parasitic elements may occur that can degrade performance and yield unreliable results. Traditionally, designers measure Constant Wave (CW) power to determine that the RF chain is performing optimally, the device is properly matched and by implication grounded. It is shown that there are situations where modulation quality can be compromised due to poor grounding that is not apparent using CW power measurements alone. The consequence of this is reduced throughput, range and reliability. Measurements are presented on a Tyndall Mote using a CC2420 RFIC todemonstrate how poor solder contact between the ground contacts and the ground layer of the PCB can lead tothe degradation of modulated performance. Detailed evaluation that required the development of a new measurement definition for 802.15.4 and analysis is presented to show how waveform quality is affected while the modulated output power remains within acceptable limits.