873 resultados para Hydrogen Isotope
Resumo:
In this work, electrical measurements show that the breakdown voltage,BVDG, of InP HEMTs increases following exposure to H2. This BVDG shift is nonrecoverable. The increase in BVDG is found to be due to a decrease in the carrier concentration in the extrinsic portion of the device.We provide evidence that H2 reacts with the exposed InAlAs surface in the extrinsic region next to the gate, changing the underlying carrier concentration. Hall measurements of capped and uncapped HEMT samples show that the decrease in sheet carrier concentration can be attributed to a modification of the exposed InAlAs surface. Consistent with this, XPS experiments on uncapped heterostructures give evidence of As loss from the InAlAs surface upon exposure to hydrogen.
Resumo:
Seeds with a high concentration of P or Mo can improve the growth and N accumulation of the common bean (Phaseolus vulgaris L.), but the effect of enriched seeds on biological N2 fixation has not been established yet. This study aimed to evaluate the effect of seeds enriched with P and Mo on growth and biological N2 fixation of the common bean by the 15N isotope dilution technique. An experiment was carried out in pots in a 2 x 3 x 2 x 2 factorial design in randomized blocks with four replications, comprising two levels of soil applied P (0 and 80 mg kg-1), three N sources (without N, inoculated with rhizobia, and mineral N), two seed P concentrations (low and high), and two seed Mo concentrations (low and high). Non-nodulating bean and sorghum were used as non-fixing crops. The substrate was 5.0 kg of a Red Latosol (Oxisol) previously enriched with 15N and mixed with 5.0 kg of sand. Plants were harvested 41 days after emergence. Seeds with high P concentration increased the growth and N in shoots, particularly in inoculated plants at lower applied P levels. Inoculated plants raised from high P seeds showed improved nodulation at both soil P levels. Higher soil P levels increased the percentage of N derived from the atmosphere (%Ndfa) in bean leaves. Inoculation with the selected strains increased the %Ndfa. High seed P increased the %Ndfa in inoculated plants at lower soil P levels. High seed Mo increased the %Ndfa at lower soil P levels in plants that did not receive inoculation or mineral N. It is concluded that high seed P concentration increases the growth, N accumulation and the contribution of the biological N2 fixation in the common bean, particularly in inoculated plants grown at lower soil P availability.
Resumo:
The carbon isotopic signature of carbonates depends on secular variations of organic carbon and carbonate carbon production/burial rates. A decrease in carbonate productivity makes the organic/carbonate carbon ratio unstable up to the point that even minor variations in the organic carbon reservoirs can provoke carbon isotopic shifts. The delta(13)C positive shifts of the middle Carixian (early Pliensbachian) and the early Bajocian recorded in the Umbria-Marche-Sabina domain represent a good example of this mechanism. Both sedimentology and lithostratigraphy of pelagic platform-basin carbonate systems in this area show that important changes in the source of carbonates correspond to the observed isotopic shifts. The middle Carixian event is in fact well correlatable to the drastic reduction of benthic carbonate production on rift-related intrabasinal highs, which then became pelagic carbonate platforms. The early Bajocian event is concomitant with the beginning of a long hiatus on the pelagic carbonate platforms and with a drop of the biodiversity of calcareous organisms followed by the onset of biosiliceous sedimentation in basins. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This study provides an organic carbon stable isotope (delta(13)C(org)) record calibrated with detailed ammonite biostratigraphy, following the end-Triassic biological crisis. Precise correlation between this crucial fossil group and the delta(13)C(org) record is key to understanding feedbacks between biological and environmental events following mass extinction. The latest Triassic and Hettangian delta(13)C(org) record shows several negative and positive excursions. The end-Triassic negative shift coinciding with the mass extinction interval is followed by a positive excursion in the earliest Hettangian Psiloceras spelae beds, which marks the onset of recovery in the marine ecosystem. This positive trend is interrupted by a second negative delta(13)C(org) excursion in the P. pacificum beds related to a minor ammonite extinction event. This pattern of the delta(13)C(org) curve culminates in the uppermost Hettangian Angulata Zone major positive excursion. This indicates that both the ecosystem and the carbon cycle remained in a state of perturbation for at least 2 Ma, although the recovery of some pelagic taxa already began at the base of Jurassic. The early and late Hettangian positive delta(13)C(org) excursions have been confused in several recent papers. Here, we show that during the Hettangian there are indeed two distinct positive delta(13)C(org) excursions. Phases of anoxia and further pulses of Central Atlantic Magmatic Province volcanism during the Hettangian might have inhibited the full recovery for that interval of time. The main Liasicus-Angulata organic positive CIE (carbon isotope excursion) during the Late Hettangian might be related to gradual decreasing of pCO(2) due to protracted high organic burial, and coincides with a second phase of recovery, as indicated by a pulse of ammonoid diversification.
Resumo:
Darwin-Foldy nuclear-size corrections in electronic atoms and nuclear radii are discussed from the nuclear-physics perspective. The interpretation of precise isotope-shift measurements is formalism dependent, and care must be exercised in interpreting these results and those obtained from relativistic electron scattering from nuclei. We strongly advocate that the entire nuclear-charge operator be used in calculating nuclear-size corrections in atoms rather than relegating portions of it to the nonradiative recoil corrections. A preliminary examination of the intrinsic deuteron radius obtained from isotope-shift measurements suggests the presence of small meson-exchange currents (exotic binding contributions of relativistic order) in the nuclear charge operator, which contribute approximately 1/2%.
Resumo:
Identification and relative quantification of hundreds to thousands of proteins within complex biological samples have become realistic with the emergence of stable isotope labeling in combination with high throughput mass spectrometry. However, all current chemical approaches target a single amino acid functionality (most often lysine or cysteine) despite the fact that addressing two or more amino acid side chains would drastically increase quantifiable information as shown by in silico analysis in this study. Although the combination of existing approaches, e.g. ICAT with isotope-coded protein labeling, is analytically feasible, it implies high costs, and the combined application of two different chemistries (kits) may not be straightforward. Therefore, we describe here the development and validation of a new stable isotope-based quantitative proteomics approach, termed aniline benzoic acid labeling (ANIBAL), using a twin chemistry approach targeting two frequent amino acid functionalities, the carboxylic and amino groups. Two simple and inexpensive reagents, aniline and benzoic acid, in their (12)C and (13)C form with convenient mass peak spacing (6 Da) and without chromatographic discrimination or modification in fragmentation behavior, are used to modify carboxylic and amino groups at the protein level, resulting in an identical peptide bond-linked benzoyl modification for both reactions. The ANIBAL chemistry is simple and straightforward and is the first method that uses a (13)C-reagent for a general stable isotope labeling approach of carboxylic groups. In silico as well as in vitro analyses clearly revealed the increase in available quantifiable information using such a twin approach. ANIBAL was validated by means of model peptides and proteins with regard to the quality of the chemistry as well as the ionization behavior of the derivatized peptides. A milk fraction was used for dynamic range assessment of protein quantification, and a bacterial lysate was used for the evaluation of relative protein quantification in a complex sample in two different biological states
Resumo:
We illustrate how to apply modern effective field-theory techniques and dimensional regularization to factorize the various scales, which appear in QED bound states at finite temperature. We focus here on the muonic hydrogen atom. Vacuum polarization effects make the physics of this atom at finite temperature very close to that of heavy quarkonium states. We comment on the implications of our results for these states in the quark gluon plasma. In particular, we estimate the effects of a finite-charm quark mass in the dissociation temperature of bottomonium.
Resumo:
Sulphur plays an essential role in plants and is one of the main nutrients in several metabolic processes. It has four stable isotopes (32S, 33S, 34S, and 36S) with a natural abundance of 95.00, 0.76, 4.22, and 0.014 in atom %, respectively. A method for isotopic determination of S by isotope-ratio mass spectrometry (IRMS) in soil samples is proposed. The procedure involves the oxidation of organic S to sulphate (S-SO4(2-)), which was determined by dry combustion with alkaline oxidizing agents. The total S-SO4(2-) concentration was determined by turbidimetry and the results showed that the conversion process was adequate. To produce gaseous SO2 gas, BaSO4 was thermally decomposed in a vacuum system at 900 ºC in the presence of NaPO3. The isotope determination of S (atom % 34S atoms) was carried out by isotope ratio mass spectrometry (IRMS). In this work, the labeled material (K2(34)SO4) was used to validate the method of isotopic determination of S; the results were precise and accurate, showing the viability of the proposed method.
Resumo:
The process of hydrogen desorption from amorphous silicon (a-Si) nanoparticles grown by plasma-enhanced chemical vapor deposition (PECVD) has been analyzed by differential scanning calorimetry (DSC), mass spectrometry, and infrared spectroscopy, with the aim of quantifying the energy exchanged. Two exothermic peaks centered at 330 and 410 C have been detected with energies per H atom of about 50 meV. This value has been compared with the results of theoretical calculations and is found to agree with the dissociation energy of Si-H groups of about 3.25 eV per H atom, provided that the formation energy per dangling bond in a-Si is about 1.15 eV. It is shown that this result is valid for a-Si:H films, too.
Resumo:
Two methods of differential isotopic coding of carboxylic groups have been developed to date. The first approach uses d0- or d3-methanol to convert carboxyl groups into the corresponding methyl esters. The second relies on the incorporation of two 18O atoms into the C-terminal carboxylic group during tryptic digestion of proteins in H(2)18O. However, both methods have limitations such as chromatographic separation of 1H and 2H derivatives or overlap of isotopic distributions of light and heavy forms due to small mass shifts. Here we present a new tagging approach based on the specific incorporation of sulfanilic acid into carboxylic groups. The reagent was synthesized in a heavy form (13C phenyl ring), showing no chromatographic shift and an optimal isotopic separation with a 6 Da mass shift. Moreover, sulfanilic acid allows for simplified fragmentation in matrix-assisted laser desorption/ionization (MALDI) due the charge fixation of the sulfonate group at the C-terminus of the peptide. The derivatization is simple, specific and minimizes the number of sample treatment steps that can strongly alter the sample composition. The quantification is reproducible within an order of magnitude and can be analyzed either by electrospray ionization (ESI) or MALDI. Finally, the method is able to specifically identify the C-terminal peptide of a protein by using GluC as the proteolytic enzyme.
Resumo:
Many studies in continental areas have successfully used the oxygen isotope composition of fossil ostracod valves to reconstruct past hydrological conditions associated with large changes in climate. Yet, ostracods are known to crystallise their valves out of isotopic equilibrium for oxygen and they generally have higher 18O contents compared to inorganic calcite grown at equilibrium under the same condi- tions. A review of vital offsets determined for continental ostracods indicates that vital offsets might change from site to site, questioning a potential influence of environmental conditions on oxygen isotope fractionation in ostracods. Results from the literature suggest that pH has no influence on ostracod vital offset. A re-evaluation of results from Li and Liu (J Paleolimnol 43:111-120, 2010) suggests that salin- ity may influence oxygen isotope fractionation in ostracods, with lower vital offsets for higher salinities. Such a relationship was also observed for the vital offsets determined by Chivas et al. (The ostracoda- applications in quaternary research. American Geo- physical Union, Washington, DC, 2002). Yet, when results of all studies are compiled, the correlation between vital offsets and salinity is low while the correlation between vital offsets and host water Mg/Ca is higher, suggesting that ionic composition of water and/or relative abundance of major ions may also control oxygen isotope fractionation in ostracods. Lack of data on host water ionic composition for the different studies precludes more detailed examination at this stage. Further studies such as natural or laboratory cultures done under strictly controlled conditions are needed to better understand the potential influence of varying environmental condi- tions on oxygen isotope compositions of ostracod valves.
Resumo:
The plutonic rocks of the Basal Complex of La Gomera, Canary Islands, Spain, were studied by means of major and trace element contents and by H-O-Sr-Nd isotope compositions in order to distinguish primary magmatic characteristics and late-stage alteration products. Deciphering the effects of alteration allowed us to determine primary, plume-related compositions that indicated D- and (18)O-depletion relative to normal upper mantle, supporting the conclusions of earlier studies on the plutonic rocks of Fuerteventura and La Palma. Late-stage alteration took place during the formation of the intrusive series induced by interaction with meteoric water. Inferred isotopic compositions of the meteoric water indicate that the water infiltrated into the rock edifice at a height of about 1500 m above sea level, suggesting the existence of a subaerial volcano which was active during the intrusive activity and that it has been either distroyed or remain buried by later volcanic and landslide events.
Resumo:
A modified magnesium hydrogen breath test, using end expiratory breath sampling, is described to investigate achlorhydria. The efficacy of this test in the diagnostic investigation of pernicious anaemia was compared with that of serum pepsinogen I. Twenty one patients with pernicious anaemia--that is, patients with achlorhydria--and 22 with healed duodenal ulcer and normal chlorhydria were studied. Magnesium hydrogen breath test, serum pepsinogen I, serum gastrin, and standard gastric acid secretory tests were performed in all subjects. The mean (SEM) hydrogen peak value was lower in patients with pernicious anaemia than in the duodenal ulcer group (21.7 (1.9) v 71.3 (5.2) ppm; p = 0.00005). The hydrogen peak value had a 95.2% sensitivity and a 100% specificity to detect pentagastrin resistant achlorhydria. Mean serum pepsinogen I concentrations were also significantly lower in patients with pernicious anaemia than in the duodenal ulcer group (10.7 (2.7) v 123.6 (11.8) micrograms/l p = 0.00005). Sensitivity and specificity to detect pernicious anaemia were both 100% for pepsinogen I. It is concluded that this modified magnesium hydrogen breath test is a simple, noninvasive, cost effective, and accurate method to assess achlorhydria and may be useful in the diagnostic investigation of patients with suspected pernicious anaemia.
Resumo:
Profiles of carbon isotopes were studied in marine limestones of Late Permian and Early Triassic age of the Tethyan region from 20 sections in Yugoslavia, Greece, Turkey, Armenian SSR, Iran, Pakistan, India, Nepal, and China. The Upper Permian sections continue the high positive values of 13C previously found in Upper Permian basins in NW Europe and western USA. In the more complete sections of Tethys it can now be demonstrated that the values of 13C drop from the Murgabian to the Dzhulfian Stages of the Upper Permian, then sharply to values near zero during the last two biozones of the Dorashamian. These levels of 13C sample the Tethys Sea and the world ocean, and equal values from deep-water sediments at Salamis Greece indicate that they apply to the whole water column. We hypothesize that the high values of 13C are a consequence of Late Paleozoic storage of organic carbon, and that the declines represent an episodic cessation of this organic deposition, and partial oxidation of the organic reservoir, extending over a period of several million years. The carbon isotope profile may reflect parallel complexity in the pattern of mass extinction in Late Permian time. Des profils isotopiques du carbone ont été établis dans des calcaires marins d'âge tardi-permien à éo-triasique répartis dans 20 endroits du domaine téthysien: Yougoslavie, Grèce, Turquie, République d'Arménie, Iran, Pakistan, Inde, Népal et Chine. Les profils établis dans le Permien supérieur montrent les mêmes valeurs positives de 13C observées antérieurement dans des bassins de même âge en Europe occidentale et dans l'ouest des USA. Dans les profils les plus complets de la Téthys, il est maintenant établi que les valeurs de 13C décroissent depuis le Murgabien jusqu'au Dzhulfien (Permien supérieur) pour devenir proches de zéro dans les deux dernières biozones du Dorasharmen. Ces valeurs de 13C sont caractéristiques de la Téthys et de l'Océan mondial; elles s'appliquent à toutes les profondeurs d'eau, comme en témoignent les valeurs fournies par des sédiments de mer profonde à Salamis (Grèce). Nous formulons l'hypothèse que les hautes valeurs de 13C sont la conséquence du stockage du carbone organique au Paléozoïque supérieur et que leur décroissance traduit un arrêt épisodique de cette sédimentation organique, accompagné d'une oxydation partielle de la matière organique s'étendant sur une période de plusieurs Ma. L'influence parallèle des phénomènes d'extinction massive à le fin du Permien se refléterait également dans les profils isotopiques du carbone.