977 resultados para Hydraulic equipment
Resumo:
BACKGROUND A rapid review, guided by a protocol, was conducted to inform development of the World Health Organization's guideline on personal protective equipment in the context of the ongoing (2013-present) Western African filovirus disease outbreak, with a focus on health care workers directly caring for patients with Ebola or Marburg virus diseases. METHODS Electronic databases and grey literature sources were searched. Eligibility criteria initially included comparative studies on Ebola and Marburg virus diseases reported in English or French, but criteria were expanded to studies on other viral hemorrhagic fevers and non-comparative designs due to the paucity of studies. After title and abstract screening (two people to exclude), full-text reports of potentially relevant articles were assessed in duplicate. Fifty-seven percent of extraction information was verified. The Grading of Recommendations Assessment, Development and Evaluation framework was used to inform the quality of evidence assessments. RESULTS Thirty non-comparative studies (8 related to Ebola virus disease) were located, and 27 provided data on viral transmission. Reporting of personal protective equipment components and infection prevention and control protocols was generally poor. CONCLUSIONS Insufficient evidence exists to draw conclusions regarding the comparative effectiveness of various types of personal protective equipment. Additional research is urgently needed to determine optimal PPE for health care workers caring for patients with filovirus.
Resumo:
AMS-14C applications often require the analysis of small samples. Such is the case of atmospheric aerosols where frequently only a small amount of sample is available. The ion beam physics group at the ETH, Zurich, has designed an Automated Graphitization Equipment (AGE III) for routine graphite production for AMS analysis from organic samples of approximately 1 mg. In this study, we explore the potential use of the AGE III for graphitization of particulate carbon collected in quartz filters. In order to test the methodology, samples of reference materials and blanks with different sizes were prepared in the AGE III and the graphite was analyzed in a MICADAS AMS (ETH) system. The graphite samples prepared in the AGE III showed recovery yields higher than 80% and reproducible 14C values for masses ranging from 50 to 300 lg. Also, reproducible radiocarbon values were obtained for aerosol filters of small sizes that had been graphitized in the AGE III. As a study case, the tested methodology was applied to PM10 samples collected in two urban cities in Mexico in order to compare the source apportionment of biomass and fossil fuel combustion. The obtained 14C data showed that carbonaceous aerosols from Mexico City have much lower biogenic signature than the smaller city of Cuernavaca.
Resumo:
Infiltration is dominantly gravity driven, and a viscous-flow approach was developed. Laminar film flow equilibrates gravity with the viscous force and a constant flow velocity evolves during a period lasting 3/2 times the duration of a constant input rate, qS. Film thickness F and the specific contact area L of the film per unit soil volume are the key parameters. Sprinkler irrigation produced in situ time series of volumetric water contents, θ(z,t), as determined with TDR probes. The wetting front velocity v and the time series of the mobile water content, w(z,t) were deduced from θ(z,t). In vitro steady flow in a core of saturated soil provided volume flux density, q(z,t), and flow velocity, v, as determined from a heat front velocity. The F and L parameters of the in situ and the in vitro experiments were compared. The macropore-flow restriction states that, for a particular permeable medium, the specific contact area L must be independent from qS i.e., dL/dqS = 0. If true, then the relationship of qS ∝ v3/2 could scale a wide range of input rates 0 ≤ qS ≤ saturated hydraulic conductivity, Ksat, into a permeable medium, and kinematic-wave theory would become a versatile tool to deal with non-equilibrium flow. The viscous-flow approach is based on hydromechanical principles similar to Darcy’s law, but currently it is not suited to deduce flow properties from specified individual spatial structures of permeable media.
Resumo:
Second Edition. Pp.5-61 General Surgical Necessities, Gauze, Antiseptic Sundries, Surgical Sundries, Rubber Bandages, Catheters, Bougies, Splints, Tents, Emergency Bags, Surgeon's Needles, Operating Instruments, Amputating, Forceps, Aspiration, Cases, Catheters and Directors, Pocket Case Instruments, Dissecting and Post-Mortem Pp.62-118 General Operating - Osteotomy, Mastoid, Trephining, Eye Instruments, Aural, Nasal, Mouth and Throat, Tooth Forceps, Laryngoscopic Sets, Hydraulic Air Compressor, Variocele, Genito Urinary Pp. 119-167 Genito Urinary-Lithotrity, Alimentary, Anal and Rectal, Gynaecological, Pessaries, Microscopes, Syringes Pp.168-205 Chemical Apparatus and Glassware, Physician's Cabinets, Office Furniture, Operating Chairs and Tables, Hospital Beds, Cautery, Electrolytic, Batteries Pp.206-246 Cases, Varicose, Braces, Abdominal Supporters, Trusses, Invalid Chairs and Supplies, Sterilizers, Saddle-Bags, Deformity Apparatus Advertisements: Bandages, Abdominal Supporters, Rubber Supplies, Bags, Batteries, Cotton, Microscopes, Hypodermic Tablets, Atomizers, Furniture, Sterilizers, Syringes
Resumo:
Denitrification bioreactors, also known as woodchip bioreactors, are a new strategy for improving drainage water quality before these flows arrive at local streams, rivers, and lakes. A bioreactor is an excavated, woodchip-filled pit that is capable of supporting native microbes that convert nitrate in the drainage water to nitrogen gas. The idea of these edgeof-field treatment systems is still relatively new, meaning it is important for investigations to be made into how to design these “pits” and to determine how drainage water moves through the woodchips. Because the bioreactor at the ISU Northeast Research Farm (NERF) is one of the best monitored bioreactor sites in the state, it provided an ideal location to not only monitor bioreactor nitrate-reduction performance, but also to investigate design hydraulics.
Resumo:
The stress history, permeability, and compressibility of sediments from Demerara Rise recovered during Ocean Drilling Program Leg 207 were determined using one-dimensional incremental load consolidation and low-gradient flow pump permeability tests. Relationships among void ratio, effective stress, and hydraulic conductivity are presented for sampled lithologic units and used to reconstruct effective stress, permeability, and in situ void ratio profiles for a transect of three sites across Demerara Rise. Results confirm that a significant erosional event occurred on the northeastern flank of the rise during the late Miocene, resulting in the removal of ~220 m of upper Oligocene-Miocene deposits. Although Neogene and Paleogene sediments tend to be overconsolidated, Cretaceous sediments are normally consolidated to underconsolidated, suggesting the presence of overpressure. A pronounced drop in permeability occurs at the transition from the Cretaceous black shales into the overlying Maastrichtian-upper Paleocene chalks and clays. The development of a hydraulic seal at this boundary may be responsible for overpressure in the Cretaceous deposits, leading to the lower overconsolidation ratios of these sediments. Coupled with large regional variations in sediment thickness (overburden stresses), the higher permeability overpressured Cretaceous sediments represent a regional lateral fluid conduit on Demerara Rise, possibly venting methane-rich fluids where it outcrops on the margin's northeastern flank.
Resumo:
Understanding the role of fluids in active accretionary prisms requires quantitative knowledge of parameters such as permeability. We report here the results of permeability tests on four samples from Ocean Drilling Program Leg 190 at the Nankai Trough accretionary prism-two from Site 1173 and two from Site 1174. Volcanic ash is present in one of the samples; otherwise, the material is hemipelagic mud. A constant-rate-of-flow technique was used at various effective pressures and rates of flow. The permeability of the four samples ranges between 10**-15 and 10**-18 m**2, with the ash-bearing sample showing the highest values.