939 resultados para Hydraulic conveying


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fluids used in hydraulic systems inevitably contain large numbers of small, solid particles, a phenomenon known as 'fluid contamination'. Particles enter a hydraulic system from the environment, and are generated within it by processes of wear. At the same time, particles are removed from the system fluid by sedimentation and in hydraulic filters. This thesis considers the problems caused by fluid contamination, as they affect a manufacturer of axial piston pumps. The specific project aim was to investigate methods of predicting or determining the effects of fluid contamination on this type of pump. The thesis starts with a theoretical analysis of the contaminated lubrication of a slipper-pad bearing. Statistical methods are used to develop a model of the blocking, by particles, of the control capillaries used in such bearings. The results obtained are compared to published, experimental data. Poor correlation between theory and practice suggests that more research is required in this area before such theoretical analysis can be used in industry. Accelerated wear tests have been developed in the U.S.A. in an attempt to predict pump life when operating on contaminated fluids. An analysis of such tests shows that reliability data can only be obtained from extensive test programmes. The value of contamination testing is suggested to be in determining failure modes, and in identifying those pump components which are susceptible to the effects of contamination. A suitable test is described, and the results of a series of tests on axial piston pumps are presented and discussed. The thesis concludes that pump reliability data can only be obtained from field experience. The level of confidence which can be placed in results from normal laboratory testing is shown to be too low for the data to be of real value. Recommendations are therefore given for the ways in which service data should be collected and analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new instrument and method are described that allow the hydraulic conductivities of highly permeable porous materials, such as gravels in constructed wetlands, to be determined in the field. The instrument consists of a Mariotte siphon and a submersible permeameter cell with manometer take-off tubes, to recreate in-situ the constant head permeameter test typically used with excavated samples. It allows permeability to be measured at different depths and positions over the wetland. Repeatability obtained at fixed positions was good (normalised standard deviation of 1–4%), and results obtained for highly homogenous silica sand compared well when the sand was retested in a lab permeameter (0.32 mm.s–1 and 0.31 mm.s–1 respectively). Practical results have a ±30% associated degree of uncertainty because of the mixed effect of natural variation in gravel core profiles, and interstitial clogging disruption during insertion of the tube into the gravel. This error is small, however, compared to the orders of magnitude spatial variations detected. The technique was used to survey the hydraulic conductivity profile of two constructed wetlands in the UK, aged 1 and 15 years respectively. Measured values were high (up to 900 mm.s –1) and varied by three orders of magnitude, reflecting the immaturity of the wetland. Detailed profiling of the younger system suggested the existence of preferential flow paths at a depth of 200 mm, corresponding to the transition between more coarse and less coarse gravel layers (6–12 mm and 3–6 mm respectively), and transverse drift towards the outlet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon capture and storage (CCS) can contribute significantly to addressing the global greenhouse gas (GHG) emissions problem. Despite widespread political support, CCS remains unknown to the general public. Public perception researchers have found that, when asked, the public is relatively unfamiliar with CCS yet many individuals voice specific safety concerns regarding the technology. We believe this leads many stakeholders conflate CCS with the better-known and more visible technology hydraulic fracturing (fracking). We support this with content analysis of media coverage, web analytics, and public lobbying records. Furthermore, we present results from a survey of United States residents. This first-of-its-kind survey assessed participants’ knowledge, opinions and support of CCS and fracking technologies. The survey showed that participants had more knowledge of fracking than CCS, and that knowledge of fracking made participants less willing to support CCS projects. Additionally, it showed that participants viewed the two technologies as having similar risks and similar risk intensities. In the CCS stakeholder literature, judgment and decision-making (JDM) frameworks are noticeably absent, and public perception is not discussed using any cognitive biases as a way of understanding or explaining irrational decisions, yet these survey results show evidence of both anchoring bias and the ambiguity effect. Public acceptance of CCS is essential for a national low-carbon future plan. In conclusion, we propose changes in communications and incentives as programs to increase support of CCS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within Canada there are more than 2.5 million bundles of spent nuclear fuel with another approximately 2 million bundles to be generated in the future. Canada, and every country around the world that has taken a decision on management of spent nuclear fuel, has decided on long-term containment and isolation of the fuel within a deep geological repository. At depth, a deep geological repository consists of a network of placement rooms where the bundles will be located within a multi-layered system that incorporates engineered and natural barriers. The barriers will be placed in a complex thermal-hydraulic-mechanical-chemical-biological (THMCB) environment. A large database of material properties for all components in the repository are required to construct representative models. Within the repository, the sealing materials will experience elevated temperatures due to the thermal gradient produced by radioactive decay heat from the waste inside the container. Furthermore, high porewater pressure due to the depth of repository along with possibility of elevated salinity of groundwater would cause the bentonite-based materials to be under transient hydraulic conditions. Therefore it is crucial to characterize the sealing materials over a wide range of thermal-hydraulic conditions. A comprehensive experimental program has been conducted to measure properties (mainly focused on thermal properties) of all sealing materials involved in Mark II concept at plausible thermal-hydraulic conditions. The thermal response of Canada’s concept for a deep geological repository has been modelled using experimentally measured thermal properties. Plausible scenarios are defined and the effects of these scenarios are examined on the container surface temperature as well as the surrounding geosphere to assess whether they meet design criteria for the cases studied. The thermal response shows that if all the materials even being at dried condition, repository still performs acceptably as long as sealing materials remain in contact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines the importance of effective stakeholder engagement that complies with the doctrines of social justice in non-renewable resources management decision-making. It uses hydraulic fracturing in the Green Point Shale Formation in Western Newfoundland as a case study. The thesis uses as theoretical background John Rawls’ and David Miller’ theory of social justice, and identifies the social justice principles, which are relevant to stakeholder engagement. The thesis compares the method of stakeholder engagement employed by the Newfoundland and Labrador Hydraulic Fracturing Review Panel (NLHFRP), with the stakeholder engagement techniques recommended by the Structured Decision Making (SDM) model, as applied to a simulated case study involving hydraulic fracturing in the Green Point Shale Formation. Using the already identified social justice principles, the thesis then developed a framework to measure the level of compliance of both stakeholder engagement techniques with social justice principles. The main finding of the thesis is that the engagement techniques prescribed by the SDM model comply more closely with the doctrines of social justice than the engagement techniques applied by the NLHFRP. The thesis concludes by recommending that the SDM model be more widely used in non- renewable resource management decision making in order to ensure that all stakeholders’ concerns are effectively heard, understood and transparently incorporated in the nonrenewable resource policies to make them consistent with local priorities and goals, and with the social justice norms and institutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streams in urban areas often utilize channelization and other bank erosion control measures to improve flood conveyance, reduce channel migration, and overbank flooding. This leads to reductions in evapotranspiration and sediment storage on floodplains. The purpose of this study is to quantify the evapotranspiration and sediment transport capacity in the Anacostia Watershed, a large Coastal Plain urban watershed, and to compare these processes to a similar sized non-urban watershed. Times series data of hydrologic and hydraulic changes in the Anacostia, as urbanization progressed between 1939-2014, were also analyzed. The data indicates lower values of warm season runoff in the non-urban stream, suggesting a shift from evapotranspiration to runoff in urban streams. Channelization in the Anacostia also increased flow velocities and decreased high flow width. The high velocities associated with channelization and the removal of floodplain storage sites allows for the continued downstream transport of sediment despite stream bank stabilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although natural gas has been praised as a clean and abundant energy source, the varying impacts and uncertainties surrounding the process of extracting natural gas from unconventional sources, known as horizontal high-volume hydraulic fracturing (HVHF) or “fracking,” have raised important concerns. The practice of HVHF is expanding so quickly that the full impacts are not yet known. This thesis project, using a grounded theory methodological approach, explores the risks and benefits associated with HVHF as recognized by the residents of two Michigan counties, one that currently produces natural gas by HVHF (Crawford County) and one that does not (Barry County). Through an analysis of media content related to HVHF in each case study site and interviews with stakeholders in both counties, this study examines perceptions of risks and benefits by comparing two communities that differ in their level of experience with HVHF operations, contributing to our understanding of how perceptions of risks and benefits are shaped by natural gas development. The comparative analysis of the case study counties revealed similarities and differences between the case study counties. Overall, Barry County residents identified fewer benefits and more risks, and had stronger negative perceptions than Crawford County residents. This study contributes to the social science literature by developing a richer theoretical frame for understanding perceptions of HVHF and also shares recommendations for industry, organizations, regulators, and government leaders interested in effectively communicating with community stakeholders about the benefits and risks of HVHF.