903 resultados para Human genome - Theses
Resumo:
Non- protein- coding RNAs ( ncRNAs) are increasingly being recognized as having important regulatory roles. Although much recent attention has focused on tiny 22- to 25- nucleotide microRNAs, several functional ncRNAs are orders of magnitude larger in size. Examples of such macro ncRNAs include Xist and Air, which in mouse are 18 and 108 kilobases ( Kb), respectively. We surveyed the 102,801 FANTOM3 mouse cDNA clones and found that Air and Xist were present not as single, full- length transcripts but as a cluster of multiple, shorter cDNAs, which were unspliced, had little coding potential, and were most likely primed from internal adenine- rich regions within longer parental transcripts. We therefore conducted a genome- wide search for regional clusters of such cDNAs to find novel macro ncRNA candidates. Sixty- six regions were identified, each of which mapped outside known protein- coding loci and which had a mean length of 92 Kb. We detected several known long ncRNAs within these regions, supporting the basic rationale of our approach. In silico analysis showed that many regions had evidence of imprinting and/ or antisense transcription. These regions were significantly associated with microRNAs and transcripts from the central nervous system. We selected eight novel regions for experimental validation by northern blot and RT- PCR and found that the majority represent previously unrecognized noncoding transcripts that are at least 10 Kb in size and predominantly localized in the nucleus. Taken together, the data not only identify multiple new ncRNAs but also suggest the existence of many more macro ncRNAs like Xist and Air.
Resumo:
Background: Current methods to find significantly under- and over-represented gene ontology (GO) terms in a set of genes consider the genes as equally probable balls in a bag, as may be appropriate for transcripts in micro-array data. However, due to the varying length of genes and intergenic regions, that approach is inappropriate for deciding if any GO terms are correlated with a set of genomic positions. Results: We present an algorithm - GONOME - that can determine which GO terms are significantly associated with a set of genomic positions given a genome annotated with (at least) the starts and ends of genes. We show that certain GO terms may appear to be significantly associated with a set of randomly chosen positions in the human genome if gene lengths are not considered, and that these same terms have been reported as significantly over-represented in a number of recent papers. This apparent over-representation disappears when gene lengths are considered, as GONOME does. For example, we show that, when gene length is taken into account, the term development is not significantly enriched in genes associated with human CpG islands, in contradiction to a previous report. We further demonstrate the efficacy of GONOME by showing that occurrences of the proteosome-associated control element (PACE) upstream activating sequence in the S. cerevisiae genome associate significantly to appropriate GO terms. An extension of this approach yields a whole-genome motif discovery algorithm that allows identification of many other promoter sequences linked to different types of genes, including a large group of previously unknown motifs significantly associated with the terms 'translation' and 'translational elongation'. Conclusion: GONOME is an algorithm that correctly extracts over-represented GO terms from a set of genomic positions. By explicitly considering gene size, GONOME avoids a systematic bias toward GO terms linked to large genes. Inappropriate use of existing algorithms that do not take gene size into account has led to erroneous or suspect conclusions. Reciprocally GONOME may be used to identify new features in genomes that are significantly associated with particular categories of genes.
Resumo:
Despite our detailed characterization of the human genome at the level of the primary DNA sequence, we are still far from understanding the molecular events underlying phenotypic variation. Epigenetic modifications to the DNA sequence and associated chromatin are known to regulate gene expression and, as such, are a significant contributor to phenotype. Studies of inbred mice and monozygotic twins show that variation in the epigenotype can be seen even between genetically identical individuals and that this, in some cases at least, is associated with phenotypic differences. Moreover, recent evidence suggests that the epigenome can be influenced by the environment and these changes can last a lifetime. However, we also know that epigenetic states in real-time are in continual flux and, as a result, the epigenome exhibits instability both within and across generations. We still do not understand the rules governing the establishment and maintenance of the epigenotype at any particular locus. The underlying DNA sequence itself and the sequence at unlinked loci (modifier loci) are certainly involved. Recent support for the existence of transgenerational epigenetic inheritance in mammals suggests that the epigenetic state of the locus in the previous generation may also play a role. Over the next decade, many of these processes will be better understood, heralding a greater capacity for us to correlate measurable molecular marks with phenotype and providing the opportunity for improved diagnosis and presymptomatic healthcare.
Resumo:
Aim-Colorectal cancer has been described in association with hyperplastic polyposis but the mechanism underlying this observation is unknown. The aim of this study was to characterise foci of dysplasia developing in the polyps of subjects with hyperplastic polyposis on the basis of DNA microsatellite status and expression of the DNA mismatch repair proteins hMLH1, hMSH2, and hMSH6. Materials and methods-The material was derived from four patients with hyperplastic polyposis and between one and six synchronous colorectal cancers. Normal (four), hyperplastic (13), dysplastic (13), and malignant (11) samples were microdissected and a PCR based approach was used to identify mutations at 10 microsatellite loci, TGF beta IIR, IGF2R, BAX, MSH3, and MSH6. Microsatellite instability-high (MSI-H) was diagnosed when 40% or more of the microsatellite loci showed mutational bandshifts. Serial sections were stained for hMLH1, hMSH2, and hMSH6. Result-DNA microsatellite instability was found in 1/13 (8%) hyperplastic samples, in 7/13 (54%) dysplastic foci, and in 8/11 (73%) cancers. None of the MSI-low (MSI-L) samples (one hyperplastic, three dysplastic, two cancers) showed loss of hMLH1 expression. All four MSI-H dysplastic foci and six MSI-H cancers showed loss of hMLH1 expression. Loss of hMLH1 in MSI-H but not in MSI-L lesions showing dysplasia or cancer was significant (p< 0.001, Fisher's exact test). Loss of hMSH6 occurred in one MSI-H cancer and one MSS focus of dysplasia which also showed loss of hMLH1 staining. Conclusion-Neoplastic changes in hyperplastic polyposis may occur within a hyperplastic polyp. Neoplasia may be driven by DNA instability that is present to a low (MSI-L) or high (MSI-H) degree. MSI-H but not MSI-L dysplastic foci are associated with loss of hMLH1 expression. At least two mutator pathways drive neoplasia in hyperplastic polyposis. The role of the hyperplastic polyp in the histogenesis of sporadic DNA microsatellite unstable colorectal cancer should be examined.
Resumo:
Of the ~1.7 million SINE elements in the human genome, only a tiny number are estimated to be active in transcription by RNA polymerase (Pol) III. Tracing the individual loci from which SINE transcripts originate is complicated by their highly repetitive nature. By exploiting RNA-Seq datasets and unique SINE DNA sequences, we devised a bioinformatic pipeline allowing us to identify Pol III-dependent transcripts of individual SINE elements. When applied to ENCODE transcriptomes of seven human cell lines, this search strategy identified ~1300 Alu loci and ~1100 MIR loci corresponding to detectable transcripts, with ~120 and ~60 respectively Alu and MIR loci expressed in at least three cell lines. In vitro transcription of selected SINEs did not reflect their in vivo expression properties, and required the native 5’-flanking region in addition to internal promoter. We also identified a cluster of expressed AluYa5-derived transcription units, juxtaposed to snaR genes on chromosome 19, formed by a promoter-containing left monomer fused to an Alu-unrelated downstream moiety. Autonomous Pol III transcription was also revealed for SINEs nested within Pol II-transcribed genes raising the possibility of an underlying mechanism for Pol II gene regulation by SINE transcriptional units. Moreover the application of our bioinformatic pipeline to both RNA-seq data of cells subjected to an in vitro pro-oncogenic stimulus and of in vivo matched tumor and non-tumor samples allowed us to detect increased Alu RNA expression as well as the source loci of such deregulation. The ability to investigate SINE transcriptomes at single-locus resolution will facilitate both the identification of novel biologically relevant SINE RNAs and the assessment of SINE expression alteration under pathological conditions.
Resumo:
Since the sequencing of the human genome was completed, attention has turned to examining the functionality of the molecular machinery, in particular of protein expression. Differential proteome analysis by two-dimensional electrophoresis has been adopted to study changes in T cell proteomes during T cell activation, and this work is increasing our understanding of the complexity of signals elicited across multiple pathways. The purpose of this review is to summarize the available evidence in the application of proteomic techniques and methodologies to understand T cell receptor activation from lipid raft and cytoskeletal rearrangements, through to signalling cascades, transcription factor modulation and changes in protein expression patterns. These include post-translational modifications, which are not encoded by the genome. © 2007 British Society for Immunology.
Resumo:
It has been postulated that immunogenicity results from the overall dissimilarity of pathogenic proteins versus the host proteome. We have sought to use this concept to discriminate between antigens and non-antigens of bacterial origin. Sets of 100 known antigenic and nonantigenic peptide sequences from bacteria were compared to human and mouse proteomes. Both antigenic and non-antigenic sequences lacked human or mouse homologues. Observed distributions were compared using the non-parametric Mann-Whitney test. The statistical null hypothesis was accepted, indicating that antigen and non-antigens did not differ significantly. Likewise, we were unable to determine a threshold able to separate meaningfully antigen from non-antigen. Thus, antigens cannot be predicted from pathogen genomes based solely on their dissimilarity to the human genome.
Resumo:
Approximately 60% of pharmaceuticals target membrane proteins; 30% of the human genome codes for membrane proteins yet they represent less than 1% of known unique crystal structures deposited in the Protein Data Bank (PDB), with 50% of structures derived from recombinant membrane proteins having been synthesized in yeasts. G protein-coupled receptors (GPCRs) are an important class of membrane proteins that are not naturally abundant in their native membranes. Unfortunately their recombinant synthesis often suffers from low yields; moreover, function may be lost during extraction and purification from cell membranes, impeding research aimed at structural and functional determination. We therefore devised two novel strategies to improve functional yields of recombinant membrane proteins in the yeast Saccharomyces cerevisiae. We used human adenosine A2A receptor (hA2AR) as a model GPRC since it is functionally and structurally well characterised.In the first strategy, we investigated whether it is possible to provide yeast cells with a selective advantage (SA) in producing the fusion protein hA2AR-Ura3p when grown in medium lacking uracil; Ura3p is a decarboxylase that catalyzes the sixth enzymatic step in the de novo biosynthesis of pyrimidines, generating uridine monophosphate. The first transformant (H1) selected using the SA strategy gave high total yields of hA2AR-Ura3p, but low functional yields as determined by radio-ligand binding, leading to the discovery that the majority of the hA2AR-Ura3p had been internalized to the vacuole. The yeast deletion strain spt3Δ is thought to have slower translation rates and improved folding capabilities compared to wild-type cells and was therefore utilised for the SA strategy to generate a second transformant, SU1, which gave higher functional yields than H1. Subsequently hA2AR-Ura3p from H1 was solubilised with n-dodecyl-β-D-maltoside and cholesteryl hemisuccinate, which yielded functional hA2AR-Ura3p at the highest yield of all approaches used. The second strategy involved using knowledge of translational processes to improve recombinant protein synthesis to increase functional yield. Modification of existing expression vectors with an internal ribosome entry site (IRES) inserted into the 5ˊ untranslated region (UTR) of the gene encoding hA2AR was employed to circumvent regulatory controls on recombinant synthesis in the yeast host cell. The mechanisms involved were investigated through the use of yeast deletion strains and drugs that cause translation inhibition, which is known to improve protein folding and yield. The data highlight the potential to use deletion strains to increase IRES-mediated expression of recombinant hA2AR. Overall, the data presented in this thesis provide mechanistic insights into two novel strategies that can increase functional membrane protein yields in the eukaryotic microbe, S. cerevisiae.
Resumo:
Economic theories of rational addiction aim to describe consumer behavior in the presence of habit-forming goods. We provide a biological foundation for this body of work by formally specifying conditions under which it is optimal to form a habit. We demonstrate the empirical validity of our thesis with an in-depth review and synthesis of the biomedical literature concerning the action of opiates in the mammalian brain and their eects on behavior. Our results lend credence to many of the unconventional behavioral assumptions employed by theories of rational addiction, including adjacent complementarity and the importance of cues, attention, and self-control in determining the behavior of addicts. We oer evidence for the special case of the opiates that "harmful" addiction is the manifestation of a mismatch between behavioral algorithms encoded in the human genome and the expanded menu of choices faced by consumers in the modern world.
Resumo:
DNA repair systems play a critical role in protecting the human genome from damage caused by carcinogens present in the environment. Mutations in DNA repair genes may be responsible for tumor development and resistance of malignant cells to chemotherapeutic agents. The major pathway for oxidative DNA damage repair is the base excision repair pathway. The objective of this study was to investigate the immunoexpression of APE-1 and XRCC-1, which are proteins involved in DNA base excision repair and its association with clinical and histopathological parameters in oral tongue squamous cell carcinoma (OTSCC), in order to investigate a possible prognostic value for those proteins. The expression of APE-1 and XRCC-1 was evaluated semi-quantitatively by immunohistochemistry in 50 OTSCC cases. Clinical data was collected from patients’ medical charts and histopathological grading was performed for each case. Statistical analysis (Chi-square and Fisher’s exact tests; significance of 5%) was performed to determine the association between protein expressions and clinico-pathological characteristics. APE-1 was highly expressed in nucleus and cytoplasm in 56% of cases. XRCC-1 showed overexpression only in nucleus in 60% of cases. High expression of XRCC-1 was significantly associated to clinical stages I and II (P=0.02). Both proteins were not associated to other clinical parameters or histopathological grading. Our findings demonstrate that DNA base excision repair proteins APE-1 and XRCC-1 are upregulated in OTSCC, however, they are not related to clinical and histologic parameters, except for XRCC-1 association to better clinical staging. Our results indicate that the immunohistochemical expression of these proteins has no association with prognostic parameters in this tumor.
Resumo:
DNA repair systems play a critical role in protecting the human genome from damage caused by carcinogens present in the environment. Mutations in DNA repair genes may be responsible for tumor development and resistance of malignant cells to chemotherapeutic agents. The major pathway for oxidative DNA damage repair is the base excision repair pathway. The objective of this study was to investigate the immunoexpression of APE-1 and XRCC-1, which are proteins involved in DNA base excision repair and its association with clinical and histopathological parameters in oral tongue squamous cell carcinoma (OTSCC), in order to investigate a possible prognostic value for those proteins. The expression of APE-1 and XRCC-1 was evaluated semi-quantitatively by immunohistochemistry in 50 OTSCC cases. Clinical data was collected from patients’ medical charts and histopathological grading was performed for each case. Statistical analysis (Chi-square and Fisher’s exact tests; significance of 5%) was performed to determine the association between protein expressions and clinico-pathological characteristics. APE-1 was highly expressed in nucleus and cytoplasm in 56% of cases. XRCC-1 showed overexpression only in nucleus in 60% of cases. High expression of XRCC-1 was significantly associated to clinical stages I and II (P=0.02). Both proteins were not associated to other clinical parameters or histopathological grading. Our findings demonstrate that DNA base excision repair proteins APE-1 and XRCC-1 are upregulated in OTSCC, however, they are not related to clinical and histologic parameters, except for XRCC-1 association to better clinical staging. Our results indicate that the immunohistochemical expression of these proteins has no association with prognostic parameters in this tumor.
Resumo:
G-Protein Coupled Receptors (GPCRs) are not only the largest protein family in the human genome but are also the single biggest target for therapeutic agents. Research into GPCRs is therefore growing at a fast pace and the range of techniques that can be applied to GPCRs is vast and continues to grow. This book provides an invaluable bench-side guide into the best and most up-to-date techniques for current and future research on GPCRs. With contributions from leading international authorities, this book equips readers with clear and detailed protocols for both well-known and up-and-coming techniques along with hints and tips for success. All the methods have been tried and tested by leading international research labs and are presented in easy-to-follow stages along with a useful overview of each technique. This book is an essential resource for all researchers in molecular biology, biochemistry, pharmacology and for graduate students.© 2010 John Wiley & Sons, Ltd.
Resumo:
There is growing evidence that the complexity of higher organisms does not correlate with the ‘complexity’ of the genome (the human genome contains fewer protein coding genes than corn, and many genes are preserved across species). Rather, complexity is associated with the complexity of the pathways and processes whereby the cell utilises the deoxyribonucleic acid molecule, and much else, in the process of phenotype formation. These pro- cesses include the activity of the epigenome, noncoding ribonucleic acids, alternative splicing and post-transla- tional modifications. Not accidentally, all of these pro- cesses appear to be of particular importance for the human brain, the most complex organ in nature. Because these processes can be highly environmentally reactive, they are a key to understanding behavioural plasticity and highlight the importance of the developmental process in explaining behavioural outcomes.
Resumo:
Email exchange in 2013 between Kathryn Maxson (Duke) and Kris Wetterstrand (NHGRI), regarding country funding and other data for the HGP sequencing centers. Also includes the email request for such information, from NHGRI to the centers, in 2000, and the aggregate data collected.
Resumo:
Jean Weissenbach, telephone interview by Kathryn Maxson and Robert Cook-Deegan, conducted from Durham, NC 09 February 2012. Jean Weissenbach, a leader in French genetic mapping, directed the French national sequencing center, Généthon, during the HGP and was instrumental in helping to build agreement to the Bermuda Principles in France.