937 resultados para Higher order interior point method
A copper-hydrogen peroxide redox system induces dityrosine cross-links and chemokine oligomerisation
Resumo:
The activity of the chemoattractant cytokines, the chemokines, in vivo is enhanced by oligomerisation and aggregation on glycosaminoglycan (GAG), particularly heparan sulphate, side chains of proteoglycans. The chemokine RANTES (CCL5) is a T-lymphocyte and monocyte chemoattractant, which has a minimum tetrameric structure for in vivo activity and a propensity to form higher order oligomers. RANTES is unusual among the chemokines in having five tyrosine residues, an amino acid susceptible to oxidative cross-linking. Using fluorescence emission spectroscopy, Western blot analysis and LCMS-MS, we show that a copper/H2O2 redox system induces the formation of covalent dityrosine cross-links and RANTES oligomerisation with the formation of tetramers, as well as higher order oligomers. Amongst the transition metals tested, namely copper, nickel, mercury, iron and zinc, copper appeared unique in this respect. At high (400 µM) concentrations of H2O2, RANTES monomers, dimers and oligomers are destroyed, but heparan sulphate protects the chemokine from oxidative damage, promoting dityrosine cross-links and multimer formation under oxidative conditions. Low levels of dityrosine cross-links were detected in copper/H2O2-treated IL-8 (CXCL8), which has one tyrosine residue, and none were detected in ENA-78 (CXCL5), which has none. Redox-treated RANTES was fully functional in Boyden chamber assays of T-cell migration and receptor usage on activated T-cells following RANTES oligomerisation was not altered. Our results point to a protective, anti-oxidant, role for heparan sulphate and a previously unrecognised role for copper in chemokine oligomerisation that may offer an explanation for the known anti-inflammatory effect of copper-chelators such as penicillamine and tobramycin.
Resumo:
The major challenge of MEG, the inverse problem, is to estimate the very weak primary neuronal currents from the measurements of extracranial magnetic fields. The non-uniqueness of this inverse solution is compounded by the fact that MEG signals contain large environmental and physiological noise that further complicates the problem. In this paper, we evaluate the effectiveness of magnetic noise cancellation by synthetic gradiometers and the beamformer analysis method of synthetic aperture magnetometry (SAM) for source localisation in the presence of large stimulus-generated noise. We demonstrate that activation of primary somatosensory cortex can be accurately identified using SAM despite the presence of significant stimulus-related magnetic interference. This interference was generated by a contact heat evoked potential stimulator (CHEPS), recently developed for thermal pain research, but which to date has not been used in a MEG environment. We also show that in a reduced shielding environment the use of higher order synthetic gradiometry is sufficient to obtain signal-to-noise ratios (SNRs) that allow for accurate localisation of cortical sensory function.
Resumo:
This article discusses property rights, corporate governance frameworks and privatisation outcomes in the Central–Eastern Europe and Central Asia (CEECA) region. We argue that while CEECA still suffers from deficient ‘higher order’ institutions, this is not attracting sufficient attention from international institutions like EBRD and the World Bank, which focus on ‘lower order’ indicators. We discuss factors that may alleviate the negative impact of the weakness in institutional environment and argue for the pecking order of privatisation, where equivalent privatisation is given a priority but speed is not compromised.
Resumo:
This thesis explores efforts to conjoin organisational contexts and capabilities in explaining sustainable competitive advantage. Oliver (1997) argued organisations need to balance the need to conform to industry’s requirements to attain legitimization (e.g. DiMaggio & Powell, 1983), and the need for resource optimization (e.g. Barney, 1991). The author hypothesized that such balance can be viewed as movements along the homogeneity-heterogeneity continuum. An organisation in a homogenous industry possesses similar characteristics as its competitors, as opposed to a heterogeneous industry in which organisations within are differentiated and competitively positioned (Oliver, 1997). The movement is influenced by the dynamic environmental conditions that an organisation is experiencing. The author extended Oliver’s (1997) propositions of combining RBV’s focus on capabilities with institutional theory’s focus on organisational context, as well as redefining organisational receptivity towards change (ORC) factors from Butler and Allen’s (2008) findings. The authors contributed to the theoretical development of ORC theory to explain the attainment of sustainable competitive advantage. ORC adopts the assumptions from both institutional and RBV theories, where the receptivity factors include both organisational contexts and capabilities. The thesis employed a mixed method approach in which sequential qualitative quantitative studies were deployed to establish a robust, reliable, and valid ORC scale. The adoption of Hinkin’s (1995) three-phase scale development process was updated, thus items generated from interviews and literature reviews went through numerous exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) to achieve convergent, discriminant, and nomological validities. Samples in the first phase (semi structured interviews) were hotel owners and managers. In the second phase, samples were MBA students, and employees of private and public sectors. In the third phase, samples were hotel managers. The final ORC scale is a parsimonious second higher-order latent construct. The first-order constructs comprises four latent receptivity factors which are ideological vision (4 items), leading change (4 items), implementation capacity (4 items), and change orientation (7 items). Hypotheses testing revealed that high levels of perceived environmental uncertainty leads to high levels of receptivity factor. Furthermore, the study found a strong positive correlation between receptivity factors and competitive advantage, and between receptivity factors and organisation performance. Mediation analyses revealed that receptivity factors partially mediate the relationship between perceived environmental uncertainty, competitive advantage and organisational performance.
Resumo:
This paper presents a simulated genetic algorithm (GA) model of scheduling the flow shop problem with re-entrant jobs. The objective of this research is to minimize the weighted tardiness and makespan. The proposed model considers that the jobs with non-identical due dates are processed on the machines in the same order. Furthermore, the re-entrant jobs are stochastic as only some jobs are required to reenter to the flow shop. The tardiness weight is adjusted once the jobs reenter to the shop. The performance of the proposed GA model is verified by a number of numerical experiments where the data come from the case company. The results show the proposed method has a higher order satisfaction rate than the current industrial practices.
Resumo:
This thesis explores the interaction between Micros (<10 employees) from non-creative sectors and website designers ("Creatives") that occurred when creating a website of a higher order than a basic template site. The research used Straussian Grounded Theory Method with a longitudinal design, in order to identify what knowledge transferred to the Micros during the collaboration, how it transferred, what factors affected the transfer and outcomes of the transfer including behavioural additionality. To identify whether the research could be extended beyond this, five other design areas were also examined, as well as five Small to Medium Enterprises (SMEs) engaged in website and branding projects. The findings were that, at the start of the design process, many Micros could not articulate their customer knowledge, and had poor marketing and visual language skills, knowledge core to web design, enabling targeted communication to customers through images. Despite these gaps, most Micros still tried to lead the process. To overcome this disjoint, the majority of the designers used a knowledge transfer strategy termed in this thesis as ‘Bi-Modal Knowledge Transfer’, where the Creative was aware of the transfer but the Micro was unaware, both for drawing out customer knowledge from the Micro and for transferring visual language skills to the Micro. Two models were developed to represent this process. Two models were also created to map changes in the knowledge landscapes of customer knowledge and visual language – the Knowledge Placement Model and the Visual Language Scale. The Knowledge Placement model was used to map the placement of customer knowledge within the consciousness, extending the known Automatic-Unconscious -Conscious model, adding two more locations – Peripheral Consciousness and Occasional Consciousness. Peripheral Consciousness is where potential knowledge is held, but not used. Occasional Consciousness is where potential knowledge is held but used only for specific tasks. The Visual Language Scale was created to measure visual language ability from visually responsive, where the participant only responds personally to visual symbols, to visually multi-lingual, where the participant can use visual symbols to communicate with multiple thought-worlds. With successful Bi-Modal Knowledge Transfer, the outcome included not only an effective website but also changes in the knowledge landscape for the Micros and ongoing behavioural changes, especially in marketing. These effects were not seen in the other design projects, and only in two of the SME projects. The key factors for this difference between SMEs and Micros appeared to be an expectation of knowledge by the Creatives and failure by the SMEs to transfer knowledge within the company.
Resumo:
This paper is partially supported by project ISM-4 of Department for Scientific Research, “Paisii Hilendarski” University of Plovdiv.
Resumo:
Purpose: To compare monochromatic aberrations of keratoconic eyes when uncorrected, corrected with spherically-powered RGP (rigid gas-permeable) contact lenses and corrected using simulations of customised soft contact lenses for different magnitudes of rotation (up to 15°) and translation (up to 1mm) from their ideal position. Methods: The ocular aberrations of examples of mild, moderate and severe keratoconic eyes were measured when uncorrected and when wearing their habitual RGP lenses. Residual aberrations and point-spread functions of each eye were simulated using an ideal, customised soft contact lens (designed to neutralise higher-order aberrations, HOA) were calculated as a function of the angle of rotation of the lens from its ideal orientation, and its horizontal and vertical translation. Results: In agreement with the results of other authors, the RGP lenses markedly reduced both lower-order aberrations and HOA for all three patients. When compared with the RGP lens corrections, the customised lens simulations only provided optical improvements if their movements were constrained within limits which appear to be difficult to achieve with current technologies. Conclusions: At the present time, customised contact lens corrections appear likely to offer, at best, only minor optical improvements over RGP lenses for patients with keratoconus. If made in soft materials, however, these lenses may be preferred by patients in term of comfort. © 2012 The College of Optometrists.
Resumo:
In this paper, a modification for the high-order neural network (HONN) is presented. Third order networks are considered for achieving translation, rotation and scale invariant pattern recognition. They require however much storage and computation power for the task. The proposed modified HONN takes into account a priori knowledge of the binary patterns that have to be learned, achieving significant gain in computation time and memory requirements. This modification enables the efficient computation of HONNs for image fields of greater that 100 × 100 pixels without any loss of pattern information.
Resumo:
The importance of “control variations” for obtaining local approximations of the reachable set of nonlinear control systems is well known. Heuristically, if one can construct control variations in all possible directions, then the considered control system is small-time locally controllable (STLC). Two concepts of control variations of higher order are introduced for the case of smooth control systems. The relation between these variations and the small-time local controllability is studied and a new sufficient STLC condition is proved.
Resumo:
A solar power satellite is paid attention to as a clean, inexhaustible large- scale base-load power supply. The following technology related to beam control is used: A pilot signal is sent from the power receiving site and after direction of arrival estimation the beam is directed back to the earth by same direction. A novel direction-finding algorithm based on linear prediction technique for exploiting cyclostationary statistical information (spatial and temporal) is explored. Many modulated communication signals exhibit a cyclostationarity (or periodic correlation) property, corresponding to the underlying periodicity arising from carrier frequencies or baud rates. The problem was solved by using both cyclic second-order statistics and cyclic higher-order statistics. By evaluating the corresponding cyclic statistics of the received data at certain cycle frequencies, we can extract the cyclic correlations of only signals with the same cycle frequency and null out the cyclic correlations of stationary additive noise and all other co-channel interferences with different cycle frequencies. Thus, the signal detection capability can be significantly improved. The proposed algorithms employ cyclic higher-order statistics of the array output and suppress additive Gaussian noise of unknown spectral content, even when the noise shares common cycle frequencies with the non-Gaussian signals of interest. The proposed method completely exploits temporal information (multiple lag ), and also can correctly estimate direction of arrival of desired signals by suppressing undesired signals. Our approach was generalized over direction of arrival estimation of cyclostationary coherent signals. In this paper, we propose a new approach for exploiting cyclostationarity that seems to be more advanced in comparison with the other existing direction finding algorithms.
Resumo:
The Analytic Hierarchy Process (AHP) is one of the most popular methods used in Multi-Attribute Decision Making. It provides with ratio-scale measurements of the prioirities of elements on the various leveles of a hierarchy. These priorities are obtained through the pairwise comparisons of elements on one level with reference to each element on the immediate higher level. The Eigenvector Method (EM) and some distance minimizing methods such as the Least Squares Method (LSM), Logarithmic Least Squares Method (LLSM), Weighted Least Squares Method (WLSM) and Chi Squares Method (X2M) are of the tools for computing the priorities of the alternatives. This paper studies a method for generating all the solutions of the LSM problems for 3 × 3 matrices. We observe non-uniqueness and rank reversals by presenting numerical results.
Resumo:
Digital systems can generate left and right audio channels that create the effect of virtual sound source placement (spatialization) by processing an audio signal through pairs of Head-Related Transfer Functions (HRTFs) or, equivalently, Head-Related Impulse Responses (HRIRs). The spatialization effect is better when individually-measured HRTFs or HRIRs are used than when generic ones (e.g., from a mannequin) are used. However, the measurement process is not available to the majority of users. There is ongoing interest to find mechanisms to customize HRTFs or HRIRs to a specific user, in order to achieve an improved spatialization effect for that subject. Unfortunately, the current models used for HRTFs and HRIRs contain over a hundred parameters and none of those parameters can be easily related to the characteristics of the subject. This dissertation proposes an alternative model for the representation of HRTFs, which contains at most 30 parameters, all of which have a defined functional significance. It also presents methods to obtain the value of parameters in the model to make it approximately equivalent to an individually-measured HRTF. This conversion is achieved by the systematic deconstruction of HRIR sequences through an augmented version of the Hankel Total Least Squares (HTLS) decomposition approach. An average 95% match (fit) was observed between the original HRIRs and those re-constructed from the Damped and Delayed Sinusoids (DDSs) found by the decomposition process, for ipsilateral source locations. The dissertation also introduces and evaluates an HRIR customization procedure, based on a multilinear model implemented through a 3-mode tensor, for mapping of anatomical data from the subjects to the HRIR sequences at different sound source locations. This model uses the Higher-Order Singular Value Decomposition (HOSVD) method to represent the HRIRs and is capable of generating customized HRIRs from easily attainable anatomical measurements of a new intended user of the system. Listening tests were performed to compare the spatialization performance of customized, generic and individually-measured HRIRs when they are used for synthesized spatial audio. Statistical analysis of the results confirms that the type of HRIRs used for spatialization is a significant factor in the spatialization success, with the customized HRIRs yielding better results than generic HRIRs.
Resumo:
The accurate and reliable estimation of travel time based on point detector data is needed to support Intelligent Transportation System (ITS) applications. It has been found that the quality of travel time estimation is a function of the method used in the estimation and varies for different traffic conditions. In this study, two hybrid on-line travel time estimation models, and their corresponding off-line methods, were developed to achieve better estimation performance under various traffic conditions, including recurrent congestion and incidents. The first model combines the Mid-Point method, which is a speed-based method, with a traffic flow-based method. The second model integrates two speed-based methods: the Mid-Point method and the Minimum Speed method. In both models, the switch between travel time estimation methods is based on the congestion level and queue status automatically identified by clustering analysis. During incident conditions with rapidly changing queue lengths, shock wave analysis-based refinements are applied for on-line estimation to capture the fast queue propagation and recovery. Travel time estimates obtained from existing speed-based methods, traffic flow-based methods, and the models developed were tested using both simulation and real-world data. The results indicate that all tested methods performed at an acceptable level during periods of low congestion. However, their performances vary with an increase in congestion. Comparisons with other estimation methods also show that the developed hybrid models perform well in all cases. Further comparisons between the on-line and off-line travel time estimation methods reveal that off-line methods perform significantly better only during fast-changing congested conditions, such as during incidents. The impacts of major influential factors on the performance of travel time estimation, including data preprocessing procedures, detector errors, detector spacing, frequency of travel time updates to traveler information devices, travel time link length, and posted travel time range, were investigated in this study. The results show that these factors have more significant impacts on the estimation accuracy and reliability under congested conditions than during uncongested conditions. For the incident conditions, the estimation quality improves with the use of a short rolling period for data smoothing, more accurate detector data, and frequent travel time updates.
Resumo:
Expanding Vocabulary and Improving Comprehension Through the Use of Graphic Organizers