603 resultados para Heteropneustes fossils
Resumo:
Based on the evaluation of 1323 carbon isotope values for Silurian to Permian terrestrial organic carbon, measured on plant fossils, cuticules, humic coals and bulk terrestrial organic matter (TOM), we conclude that the temporal trend in d13CTOM records variations in the global carbon cycle, notably an increase in the fractional burial of light (terrestrial) organic matter in Late Palaeozoic sediments. d13CTOM values suggest that the Late Palaeozoic pO2 peak could have been restricted to a time frame of ca. 40 Ma. Carbon isotope data from four taxonomic groups reveal small differences that could be a consequence of habitat conditions. No significant differences in organic carbon isotopic composition in relation to variable climatic conditions are discernible. The carbon isotopic composition solely reflects C3 plant metabolism.
Resumo:
Exotic limestone masses with silicified fossils, enclosed within deep-water marine siliciclastic sediments of the Early to Middle Miocene Astoria Formation, are exposed along the north shore of the Columbia River in southwestern Washington, USA. Samples from four localities were studied to clarify the origin and diagenesis of these limestone deposits. The bioturbated and reworked limestones contain a faunal assemblage resembling that of modern and Cenozoic deep-water methane-seeps. Five phases make up the paragenetic sequence: (1) micrite and microspar; (2) fibrous, banded and botryoidal aragonite cement, partially replaced by silica or recrystallized to calcite; (3) yellow calcite; (4) quartz replacing carbonate phases and quartz cement; and (5) equant calcite spar and pseudospar. Layers of pyrite frequently separate different carbonate phases and generations, indicating periods of corrosion. Negative d13Ccarbonate values as low as -37.6 per mill V-PDB reveal an uptake of methane-derived carbon. In other cases, d13Ccarbonate values as high as 7.1 per mill point to a residual, 13C-enriched carbon pool affected by methanogenesis. Lipid biomarkers include 13C-depleted, archaeal 2,6,10,15,19-pentamethylicosane (PMI; d13C: -128 per mill), crocetane and phytane, as well as various iso- and anteiso-carbon chains, most likely derived from sulphate-reducing bacteria. The biomarker inventory proves that the majority of the carbonates formed as a consequence of sulphate-dependent anaerobic oxidation of methane. Silicification of fossils and early diagenetic carbonate cements as well as the precipitation of quartz cement - also observed in other methane-seep limestones enclosed in sediments with abundant diatoms or radiolarians - is a consequence of a preceding increase of alkalinity due to anaerobic oxidation of methane, inducing the dissolution of silica skeletons. Once anaerobic oxidation of methane has ceased, the pH drops again and silica phases can precipitate.
Resumo:
Isotopic compositions of marine sediments and fossils have been investigated from northern basins of the Mediterranean to help constrain local oceanographic and climatic changes adjacent to the uplifting Alps. Stable C and O isotope compositions of benthic and planktonic foraminifera from the Umbria-Marche region (UMC) have an offset characteristic for their habitats and the changes in composition mimic global changes, suggesting that the regional conditions of climate and the carbon cycle were controlled by global changes. The radiogenic isotope composition of these fossil assemblages allows recognition of three distinct periods. In the first period, from 25 to 19 Ma, high epsilon-Nd values and low 87Sr/86Sr of sediments and fossils support intense tectonism and volcanism, related to the opening of the western Mediterranean. In the second period, from 19 to 13 Ma the 87Sr/86Sr ratio of Mediterranean (UMC) deviate from the global ocean, which is compatible with rapid uplift of the hinterland and intense influx of Sr from Mesozoic carbonates of the western Apennines. This local control on the seawater was driven by a humid and warm climate and indicates restricted exchange of water with the global ocean. Generally, the epsilon-Nd values of the fossils are very similar to those of Indian Ocean water, with brief periods of a decrease in the epsilon-Nd values coinciding with volcanic events and maybe sea level variation at 15.2 Ma. In the third period, from 13 to 10 Ma the fossils have 87Sr/86Sr similar to those of Miocene seawater while their epsilon-Nd values change considerably with time. This indicates fluctuating influence of the Atlantic versus the Paratethys and/or locally evolved seawater in the Mediterranean driven by global sea level changes. Other investigated localities near the Alps and from the ODP 900 site are compatible with this oceanographic interpretation. However, in the late early Miocene, enhanced local control, reflecting erosion of old crustal silicate rocks near the Alps, results in higher 87Sr/86Sr.
Resumo:
Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (d44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of d44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, d44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the d44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these sites (the actual rates could be significantly slower) because other processes that impact the calcium isotope composition of sedimentary pore fluid have not been included. The results provide direct geochemical evidence for the anecdotal observation that the best-preserved carbonate fossils are often found in clay or organic-rich sedimentary horizons. The results also suggest that the presence of clay minerals has a strong passivating effect on the surfaces of biogenic carbonate minerals, slowing dissolution dramatically even in relation to the already-slow rates typical of carbonate-rich sediments.
Resumo:
Sites 1096 and 1101, two hemipelagic sediment drift sites on the continental rise off the northwestern Pacific margin of the Antarctic Peninsula, contained calcareous nannofossils in the upper intervals of each site (downhole to 168.37 meters below seafloor [mbsf] in Hole 1096B and 121.1 mbsf in Hole 1101A). The occurrences were sporadic and observed to be confined to fine-grained intervals. These intervals were interpreted on board to be interglacial and often contained foraminifers as well. Calcareous nannofossils exhibited a reliable stratigraphy during an interval when other fossils groups were absent, quite rare, or reworked. In total, nine events and three zones were recognized in this study. The base of the Pleistocene was not recorded with calcareous nannofossils, the oldest datum being the first occurrence of medium Gephyrocapsa spp. at 1.69 Ma. All events have been correlated to the paleomagnetic record for each site.
Resumo:
Although they are fossils of uncertain origin, bolboforms are the best calcareous microfossil group for Neogene biostratigraphy in the North Atlantic. Fifty-two Bolboforma species were observed at the Hatton-Rockall Basin in Ocean Drilling Program Holes 982A (26 samples) and 982B (301 samples) and in Deep Sea Drilling Project Hole 116 (71 samples). The sequence investigated spans the interval from lower Miocene to upper Pliocene. Fourteen zones/subzones were identified and correlated with the calcareous nannoplankton zones, the planktonic foraminifer biostratigraphy, and the time (Ma). The last occurrence of the genus Bolboforma can be dated to 2.84 Ma. Different Bolboforma specimens of middle Miocene age, observed in upper Miocene and upper middle Miocene sediments at Site 982, document redeposition of sediment from the Rockall Bank into the Hatton-Rockall Basin during the latest middle Miocene and late Miocene.
Resumo:
A planktonic foraminiferal zonal scheme is presented for subdivision of the Upper Cretaceous pelagic carbonate sequence from southern mid-high latitudes. Definition of the zones is based on first and last occurrences of planktonic foraminifera from Ocean Drilling Program Holes 762C and 763B (Leg 122; Exmouth Plateau, south Indian Ocean). During the Late Cretaceous the studied holes were located close to 50°S and for the first time a complete sedimentary record for the mid-high latitudes was obtained. A detailed biostratigraphic analysis has allowed recognition of two new zones (Falsotruncana maslakovae Zone and Marginotruncana marianosi Zone) for the interval extending from the last occurrence of Helvetoglobotruncana helvetica to the first occurrence of Dicarinella asymetrica (upper Turonian - lower Santonian). From this study it is apparent that some low latitude (Globotruncana ventricosa, Hedbergella flandrini, Marginotruncana marianosi) and high latitude (Globigerinelloides impensus and Hedbergella sliteri) marker taxa display a vertical distribution at mid-high latitudes which is different from that known from low latitudes; moreover, one species (Heterohelix papula), overlooked at low latitudes, exhibits a restricted range that seems to be useful for chrono-biostratigraphic correlations: its appearance is suggested to coincide with the Coniacian/Santonian boundary. The proposed biozonation, which is integrated with calcareous nannofossil and magnetostratigraphic data available for the sections studied, is compared with both the low-latitude standard zonation and the planktonic foraminiferal zonal scheme for the circum-Antarctic region, in order to define a bio-chronostratigraphic scale that is useful for mid-high latitudes of the southern oceans.
Resumo:
Oxygen and carbon isotopes have been determined from Late Jurassic (Oxfordian-Tithonian) belemnites and inoceramid bivalves from two Deep Sea Drilling Project (DSDP) sites located on the Falkland Plateau. Mean belemnite delta18O values, derived from well preserved skeletal material, were -1.29? from DSDP site 330 and -1.45? from DSDP site 511. Assuming a seawater SMOW value of -1.0?, mean palaeotemperatures calculated from the oxygen isotopic composition are 17.2°C and 17.9°C, respectively. The inoceramid bivalves yielded much lighter delta18O values (mean -3.58?). Petrographic and geochemical evidence points to the inoceramid bivalves being altered by diagenesis which accordingly accounts for the observed differences in isotopic values. "Vital effects" or the importation of belemnites or inocerarnids from another area, are considered not to account for the observed isotopic trends. The palaeotemperatures interpreted from the belemnites are significantly warmer than other recent estimates of Late Jurassic temperature (from oxygen isotope studies and climate model predictions) from similar southern palaeolatitudes. We suspect our apparent warmer temperatures are because of a combination of increased freshwater runoff depleting surface waters with respect to delta18O and related to the semi-enclosed nature of the depositional basin retaining warmth, relative to the open ocean of similar latitudes.