376 resultados para Hedysarum laeve Maxim
Resumo:
"List of passages in which the maxim is expressed or implied": p. [100]-104.
Resumo:
Mode of access: Internet.
Resumo:
Top Row: Douglas G. Pointon, Anne M. Laliberte, Anne T. Reaume, Karen R. Anderson, Margaret A. Mehall, Laura Meintel(Cepko), Sharon M. Milberger, Felicia I. Kle??, Pamela J. DcKeyser, Kathryn G. Maudlin, Mary C. Downey, Julie A. Gergen, Anne K. Hubling, Helen Mourao, Deborah L. Dubrul, Sarah E. Whorf
Row 2: Andrea Mitchell, Karen E. Grost, Paula V. Nersesian, Kelly A. Fleming, Mary Beth Morton, Lynda L. Cooley, Cynthia A. Wandzel, Deborah L. Bach, Karen A. Schwartz, Rhonda G. Pasma, Lesley M. Shafer, Michelle A. Kauer, Mary Jo Raftery, Carol A. Hammell, Josephine G. Ratcliffe
Row 3: Shon A. Pilarski, Julie S. Peritz, Terri L. McPherson, Tina T. chandler, Janet C. Pinkerton, Rosanna M. Knapp, Lisa A. Krukowski, Madelyn L. Nichols, Jaleh Shafii, Elizabeth A. Beer, Molly A. Finn, Dyann E. Botsford, Kathryn J. Meier, Angela L. Bruder (Crane), Herlinda Olive-Downs, Laura B. Bailey
Row 4: Laura L. Brooks, Lisa K. Feezell
Row 5: Cindy L. Harvey, Kerri A. Bacsanyi, Diane R. Cepko, Sheila E. Falk, Marylin A. Jeromin, Marianne Gerard, Sharon L. Podeszwa, Lynette A. LaPratt, Mary Ann Williams, Diana L. Faulk, Christine L. Henriksen, Sharon M. LaMacchia
Row 6: Deborah A. ranazzi (Maxim), Debra J. Mitchell, Holly B. O'Brien, Elaine K. Hebda, Jeanne L. Bruff, Crystal M. Emery, Cleola Hinton, Kathleen T. Hutton, Holly L. Nelson, Karen F. Kraker
Row 7: Meghan A. Sweeney, Christine M. Olree, Marlynn J. Marroso, Toni L. Lowery, Catherine L. Carroll, Elisabeth A. Pennington, Shake Ketefian, Rhetaugh G. Dumas, Janice B. Lindberg, Marlene Rutledge, Kimberley A. Vnuk, Anne M. Walsh, Rae Ann Vander Weide, Cheryl L. Boyd
Row 8: Renee M. Marks, Janine M. Simon, Renee A. Bowles, Linda Kurpinski-Nabozny, Teresa E. Ohman, Joanna E. Bok, Jodi F. Siegel, Janeen M. Chebli, Susan M. Williamson, Mary M. Fedewa, Rose Marie Stacey, Angela J. DeWitt, Kim E. Whelan, Lyndall P. Miller
Row 9: Jean M. Dziurgot, Amy J. Elwart, Lorrie A. Sheck, Amy A. Plasman, Mary L. Schuette, Susan K. Bowen, Heather A. Woodward, Luann N. Richert, Laurie J. Schlukebir, Linda L. Stevenson(Said), Carolyn N. Hartke, Rebecca L. Evans, Kathryn A. Savage, Kathryn A. Sailus (Linden), Heidi Deininger, Jennifer J. Eppley
Resumo:
Top Row: Lisa A. Anton, Karen M. Banish, Sherry L. Bendele, Lori Bishop, Rossana Biundo, Jennifer Brooks, Stefanie J. Brown, Kimberly J. Coleman, Christine M. Decker, Mary Jo Diebold, Molly Donohue, Mary C. Dubois, Meggan C. Ebert
Row 2: Michelle Fox, Ann Marie Gergely, Nina N. Giglio, Stephen Gniewek, Jennifer K. Gollon, Laura E. Gregorius, Shiree A. Hamilton, Corinne R. Hardecki, Yoline M. Hargrave, Raina C. Hartitz, Dana M. Hocking, Andrea E. Jarrett
Row 3: Nancy Johnson, Harjot Kaur, Doreen M. Kinney, Kristine Boyle, Michele Phillips, Anthony Stewart, Pamela Blumson, Lisa Rudin, Lisa Eby, Christina Koehlmann, Julie A. Kolar, Shelly M. Kraiza
Row 4: Cindy Kvarnberg, Beth Anne Lannan, Martha Lasley, James A. Lowery
Row 5: Eileen M. Lucier, Anne Marie Lutostanski, Crystal Tchoryk, Kathy Kline, Donna L. Marshall, Mary C. Maxim
Row 6: Melinda J. Mc Calla, Carolyn Mclean, Molly B. Meyersohn, Christine L. Nersesian, Ann-Marie Nosotti
Row 7: Darlene D. Osemlak, Francine D. Paglia, Danee L. Paullin, Shake Ketefian, Janice B. Lindberg, Rhetaugh G. Dumas, Violet Barkauskas, Beverly Jones, Elisabeth Pennington, Jill L. Pierpont, Marie E. Rosenburg, Rebecca L. Rotole
Row 8: Carla D. Rouse, Merilynne H. Rush, Bernadette Michelle Santos, Stephanie A. Schaltz, Colleen M. Seastrom, Anita M. Shedlock, Judith A. Skonieczny, Alice Skumautz, Nancy A. Standler, Kristine Stoetzer, Annaflor O. Suan, Lynn E. Taylo
Row 9: Renee M. Thibodeau, Kirsten M. Thornquist, Lisa A. Treash, Lisa Marie Warriner, Miriam Beth Weiner, Teresa Wen, Martha Hill Wenzler, Melissa K. White, Denise M. Williams, Christina L. Wroubel, Jamie K. Yeulett, Sarah Jo York, Jennifer Zolinski
Resumo:
Front Row: Tamara McBratney, Danielle Scaglione, Helen Dalis, Fazeela Siddiqui, Cori Cunningham, Carissa Bragg, Student Manager Lisa Durham
Second Row: Petra Juzwishin, Brooke Goodwin, Kate Maxim, Justin Goble, Alison Hickey, Rachel Brunelle, Julie Brescoll, Caroline Gregory
Third Row: Hannah Fenster, Heather Mandoli, Katie Reynolds, Liz Glenn, Sophie Roberge, Erin Kopicki, Emy Bury, Liz Nelson
Fourth Row: Pam Reid, Kristin Rosella, Kristine Johns, Elizabeth Kreger, Laurel Donnell-Fink, Angela Bierhuizen, Bernadette Marten, Sera Coppolino
Top Row (L-R): Jenny Bryant, Christina Ceo, Amy Anstandig, Christina Meyer, Kate Johnson, Emily Goodwin, Melanie Duncan
Resumo:
To help understand how sugar interactions with proteins stabilise biomolecular structures, we compare the three main hypotheses for the phenomenon with the results of long molecular dynamics simulations on lysozyme in aqueous trehalose solution (0.75 M). We show that the water replacement and water entrapment hypotheses need not be mutually exclusive, because the trehalose molecules assemble in distinctive clusters on the surface of the protein. The flexibility of the protein backbone is reduced under the sugar patches supporting earlier findings that link reduced flexibility of the protein with its higher stability. The results explain the apparent contradiction between different experimental and theoretical results for trehalose effects on proteins.
Resumo:
Few-mode fiber transmission systems are typically impaired by mode-dependent loss (MDL). In an MDL-impaired link, maximum-likelihood (ML) detection yields a significant advantage in system performance compared to linear equalizers, such as zero-forcing and minimum-mean square error equalizers. However, the computational effort of the ML detection increases exponentially with the number of modes and the cardinality of the constellation. We present two methods that allow for near-ML performance without being afflicted with the enormous computational complexity of ML detection: improved reduced-search ML detection and sphere decoding. Both algorithms are tested regarding their performance and computational complexity in simulations of three and six spatial modes with QPSK and 16QAM constellations.
Resumo:
We show transmission of a 3x112-Gb/s DP-QPSK mode-division-multiplexed signal up to 80km, with and without multi-mode EDFA, using blind 6x6 MIMO digital signal processing. We show that the OSNR-penalty induced by mode-mixing in the multi-mode EDFA is negligible.
Resumo:
We study the molecular mechanisms of alkali halide ion interactions with the single-wall carbon nanotube surface in water by means of fully atomistic molecular dynamics simulations. We focus on the basic physical-chemical principles of ion–nanotube interactions in aqueous solutions and discuss them in light of recent experimental findings on selective ion effects on carbon nanotubes.
Resumo:
The world is connected by a core network of long-haul optical communication systems that link countries and continents, enabling long-distance phone calls, data-center communications, and the Internet. The demands on information rates have been constantly driven up by applications such as online gaming, high-definition video, and cloud computing. All over the world, end-user connection speeds are being increased by replacing conventional digital subscriber line (DSL) and asymmetric DSL (ADSL) with fiber to the home. Clearly, the capacity of the core network must also increase proportionally. © 1991-2012 IEEE.
Resumo:
As property lawyers, we are all familiar with the general principle that a contract for the sale of land, which is capable of specific performance, operates in equity so as to confer a trust on the purchaser pending completion of the sale. Although some controversy exists as to the exact nature of the trust, it is well established that, upon exchange of contracts, equity will ‘‘treat that as done which ought to be done’’1 with the consequence that the purchaser acquires equitable ownership even though full (legal) title to the land will not pass until completion (and registration). As land is unique, specific performance is readily available in the context of sales of land where damages would, clearly, not be an adequate remedy. The same cannot be said for contracts for the purchase of personal property where invariably the subject matter is not unique and where a substitute can easily be acquired in the open market. In circumstances, however, where the property is unique or scarce (for example, a rare painting or vintage car), the maxim that ‘‘equity treats as done that which ought to be done’’ may be invoked so as to confer on the seller an equitable obligation to transfer the property to the purchaser in fulfilment of the contract. Where, therefore, the contract is specifically enforceable in this way, the seller, it is submitted, will again hold the property on trust for the purchaser where, as in a contract for the sale of land, there is an interval between the date of the contract and completion of the sale. The notion that a seller holds personal property upon trust for the purchaser pending completion of the sale is admittedly controversial, but this article seeks to argue that the same principles governing equity’s intervention in sales of land should apply in the context of sales of personalty. It is submitted that equity’s role in imposing a trust on the vendor both in relation to sales of land and personalty may be important in safeguarding the interests of the purchaser prior to, as well as after, completion of the transaction.
Resumo:
The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with "negative absorption" of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors-random distributed feedback fibre laser-was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100km. Although an effective reflection due to the Rayleigh scattering is extremely small (~0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres).This review presents the current status of research in the field of random fibre lasers and shows their potential and perspectives. We start with an introductory overview of conventional distributed feedback lasers and traditional random lasers to set the stage for discussion of random fibre lasers. We then present a theoretical analysis and experimental studies of various random fibre laser configurations, including widely tunable, multi-wavelength, narrow-band generation, and random fibre lasers operating in different spectral bands in the 1-1.6μm range. Then we discuss existing and future applications of random fibre lasers, including telecommunication and distributed long reach sensor systems. A theoretical description of random lasers is very challenging and is strongly linked with the theory of disordered systems and kinetic theory. We outline two key models governing the generation of random fibre lasers: the average power balance model and the nonlinear Schrödinger equation based model. Recently invented random distributed feedback fibre lasers represent a new and exciting field of research that brings together such diverse areas of science as laser physics, the theory of disordered systems, fibre optics and nonlinear science. Stable random generation in optical fibre opens up new possibilities for research on wave transport and localization in disordered media. We hope that this review will provide background information for research in various fields and will stimulate cross-disciplinary collaborations on random fibre lasers. © 2014 Elsevier B.V.
Resumo:
Recently, temporal and statistical properties of quasi-CW fiber lasers have attracted a great attention. In particular, properties of Raman fiber laser (RFLs) have been studied both numerically and experimentally [1,2]. Experimental investigation is more challengeable, as the full generation optical bandwidth (typically hundreds of GHz for RFLs) is much bigger than real-time bandwidth of oscilloscopes (up to 60GHz for the newest models). So experimentally measured time dynamics is highly bandwidth averaged and do not provide precise information about overall statistical properties. To overpass this, one can use the spectral filtering technique to study temporal and statistical properties within optical bandwidth comparable with measurement bandwidth [3] or indirect measurements [4]. Ytterbium-doped fiber lasers (YDFL) are more suitable for experimental investigation, as their generation spectrum usually 10 times narrower. Moreover, recently ultra-narrow-band generation has been demonstrated in YDFL [5] which provides in principle possibility to measure time dynamics and statistics in real time using conventional oscilloscopes. © 2013 IEEE.
Resumo:
We show transmission of a 73.7 Tb/s (96x3x256-Gb/s) DP-16QAM modedivision- multiplexed signal over 119km of few-mode fiber with inline multi-mode EDFA, using 6x6 MIMO digital signal processing. The total demonstrated net capacity is 57.6 Tb/s (SE 12 bits/s/Hz). © 2012 OSA.
Resumo:
We experimentally and theoretically describe formation of random fiber laser's optical spectrum. We propose a new concept of active cycled wave kinetics from which we derive first ever nonlinear kinetic theory describing laser spectrum. © OSA 2015.