903 resultados para Heated cavity
Resumo:
Low cost Si-based tunable InGaAs RCE photodetectors operating at 1.3similar to1.6 mum were fabricated using sol-gel bonding. A tuning range of 14.5 nm, a quantum efficiency of 44% at 1476 nm and a 3-dB bandwidth of 1.8 GHz were obtained.
Resumo:
The scattering matrix method is used to analyze the multiple reflection effect between the laser diode facet and the fiber grating facet by considering the fiber grating external cavity laser diode (FGECL) as a four-mirror cavity laser. When neglecting other important parameters such as butt-coupling distance between the diode and the fiber facets, coupling efficiency, external cavity length, it is shown that low reflectivity is not a crucial factor for the laser characteristics such as SMSR. Experimentally high SMSR fiber grating external cavity laser is fabricated with a relatively large residual facet reflectivity (about 1%), which is coincident with our simulation results.
Resumo:
The high quality Ge islands material with 1.55 mu m photo-response grown on Sol substrate is reported. Due to the modulation of the cavity formed by the mirrors at the surface and the buried SiO2 interface, seven sharp and strong peaks with narrow linewidth are found. And a 1.55 mu m Ge islands resonant-cavity-enhanced (RCE) detector with narrowband was fabricated by a simple method. The bottom mirror was deposited in the hole formed by anisotropically etching, in a basic solution from the backside of the sample with the buried SiO2 layer in silicon-on-insulator substrate as the etch-stop layer. Reflectivity spectrum indicates that the mirror deposited in the hole has a reflectivity as high as 99% in the range of 1.2-1.65 mu m. The peak responsivity of the RCE detector at 1543.8 nm is 0.028 mA/W and a full width at half maximum of 5 nm is obtained. Compared with the conventional p-i-n photodetector, the responsivity of RCE detector has a nearly threefold enhancement.
Resumo:
We demonstrate a novel oxide confined GaAs-based photonic crystal vertical cavity surface emitting laser (PC-VCSEL) operating at a wavelength of 850 nm based on coherent coupling. A ring-shaped light-emitting aperture is added to the conventional PC-VCSEL, and coherent coupling is achieved between the central defect aperture and the ring-shaped light-emitting aperture. Measurements show that under the continuous-wave (CW) injected current of 20 mA, a high power of 2 mW is obtained, and the side mode suppression ratio (SMSR) is larger than 20 dB. The average divergence angle is 4.2 degrees at the current level of 20 mA. Compared with the results ever reported, the divergence angle is reduced.
Resumo:
The control of the photonic crystal waveguide over the beam profile of vertical-cavity surface-emitting lasers is investigated. The symmetric slab waveguide model is adopted to analyze the control parameters, of the beam profile in the photonic-crystal vertical-cavity surface-emitting laser (PC-VCSEL). The filling factor (the ratio of the hole diameter to the lattice constant) and the etching depth control the divergence angle of the PC-VCSEL, and the low filling factor and the shallow etching depth are beneficial to achieve the low-divergence-angle beam. Two types of PC-VCSELs with different filling factors and etching depths are designed and fabricated. The experimental results show that the device with a lower filling factor and a shallower etching depth has a lower divergence angle, which agrees well with the theoretical predictions.
Resumo:
We demonstrated oxide-confined 850-nm vertical-cavity surface-emitting lasers (VCSELs) with a two-dimensional petal-shaped holey structure composed of several annular-sector-shaped holes. Four types of devices with different hole numbers were designed and fabricated. The measured results showed that the larger hole number was beneficial to purifying the lasing mode, and realizing the single-mode operation. The side mode suppression ratio (SMSR) exceeded 30 dB throughout the entire drive current. Mode selective loss mechanism was used to explain the single-mode characteristic. The single-mode devices possessed good beam profiles, and the lowest divergence angle was as narrow as 3.2 degrees (full width at half maximum), attributed to the graded index profile and the shallow etching in the top distributed Bragg reflector (DBR).
Resumo:
Phase-locked oxide-confined ring-defect photonic crystal vertical-cavity surface-emitting laser is presented. The coupled-mode theory is employed to illustrate the two supermodes of the device, in-phase and out-of-phase supermode. Experimental results verify the two supermodes by the characteristics of the spectra and the far field patterns. At the lower current, only the out-of-phase supermode is excited, whereas under the higher current, the in-phase supermode also appears at the shorter wavelength range. In addition, the measured spectral separation between the two supermodes agrees well with the theoretical result.
Resumo:
A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm(2) only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current density can be reduced remarkably compared with the free-running QD gain device.
Resumo:
The self-heating effect in 1.3 mu m p-doped InAs/GaAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) has been investigated using a self-consistent theoretical model. Good agreement is obtained between theoretical analysis and experimental results under pulsed operation. The results show that in p-doped QD VCSELs, the output power is significantly influenced by self-heating. About 60% of output power is limited by self-heating in a device with oxide aperture of 5x6 mu m(2). This value reduces to 55% and 48%, respectively, as the oxide aperture increases to 7x8 and 15x15 mu m(2). The temperature increase in the active region and injection efficiency of the QDs are calculated and discussed based on the different oxide aperture areas and duty cycle.
Resumo:
Broadband grating-coupled external cavity laser, based on InAs/GaAs quantum dots, is achieved. The device has a wavelength tuning range from 1141.6 nm to 1251.7 nm under a low continuous-wave injection current density (458 A/cm(2)). The tunable bandwidth covers consecutively the light emissions from both the ground state and the 1st excited state of quantum dots. The effects of cavity length and antireflection facet coating on device performance are studied. It is shown that antireflection facet coating expands the tuning bandwidth up to similar to 150 nm, accompanied by an evident increase in threshold current density, which is attributed to the reduced interaction between the light field and the quantum dots in the active region of the device.
High power single-mode large-mode-area photonic crystal fiber laser with improved Fabry-Perot cavity
Resumo:
National Natural Science Foundationa of China(602537060,60408002)
Resumo:
Based on the n(x, lambda), the calculation of the reflection spectrum for vertical cavity surface emitting lasers shows that the deviation of the central wavelength caused by the change of layer thickness is much more than that caused by the change of AlAs mole fractions. Therefore the control of the MBE growth rate is very important.