903 resultados para Heat transfer coefficient
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Cornell Aeronautical Laboratory, Inc., Buffalo. Report no. AA-1948-Y-3
Resumo:
"62-11604."
Resumo:
"Contract no. AF-33(616)-6025. Project no. 7064. Task no. 70169. Aeronautical Research Laboratory, Air Force Research Division, Air Research and Development Command, United States Air Force, Wright-Patterson Air Force Base."
Resumo:
Army Ordinance contract no. DA-04-495-Ord-19.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p . 29.
Resumo:
"ORNL-985."
Resumo:
"Purdue Research Foundation. Research Project no. 1717. Project Ae-33. This research was supported by the McDonnell Aircraft Corporation under Contract no. 6140-20 P.O. 7S4899-R."
Resumo:
"A report on a conference at Zion, Illinois, which was supported by the Research Applications Directorate of the National Science Foundations, grant GI-30971".
Resumo:
Includes bibliographical references (p. 15)
Resumo:
"Purdue Research Foundation. Research project no.1717. Project Ae-33. This research was supported by the McDonnell Aircraft Corporation under Contract no. 6140-20 P. O. 7S4899-R."
Resumo:
The aerated stirred reactor (ASR) has been widely used in biochemical and wastewater treatment processes. The information describing how the activated sludge properties and operation conditions affect the hydrodynamics and mass transfer coefficient is missing in the literature. The aim of this study was to investigate the influence of flow regime, superficial gas velocity (U-G), power consumption unit (P/V-L), sludge loading, and apparent viscosity (pap) of activated sludge fluid on the mixing time (t(m)), gas hold-up (epsilon), and volumetric mass transfer coefficient (kLa) in an activated sludge aerated stirred column reactor (ASCR). The activated sludge fluid performed a non-Newtonian rheological behavior. The sludge loading significantly affected the fluid hydrodynamics and mass transfer. With an increase in the UG and P/V-L, the epsilon and k(L)a increased, and the t(m), decreased. The E, kLa, and tm,were influenced dramatically as the flow regime changed from homogeneous to heterogeneous patterns. The proposed mathematical models predicted the experimental results well under experimental conditions, indicating that the U-G, P/V-L, and mu(ap) had significant impact on the t(m) epsilon, and k(L)a. These models were able to give the tm, F, and kLa values with an error around +/- 8%, and always less than +/- 10%. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Purpose - In many scientific and engineering fields, large-scale heat transfer problems with temperature-dependent pore-fluid densities are commonly encountered. For example, heat transfer from the mantle into the upper crust of the Earth is a typical problem of them. The main purpose of this paper is to develop and present a new combined methodology to solve large-scale heat transfer problems with temperature-dependent pore-fluid densities in the lithosphere and crust scales. Design/methodology/approach - The theoretical approach is used to determine the thickness and the related thermal boundary conditions of the continental crust on the lithospheric scale, so that some important information can be provided accurately for establishing a numerical model of the crustal scale. The numerical approach is then used to simulate the detailed structures and complicated geometries of the continental crust on the crustal scale. The main advantage in using the proposed combination method of the theoretical and numerical approaches is that if the thermal distribution in the crust is of the primary interest, the use of a reasonable numerical model on the crustal scale can result in a significant reduction in computer efforts. Findings - From the ore body formation and mineralization points of view, the present analytical and numerical solutions have demonstrated that the conductive-and-advective lithosphere with variable pore-fluid density is the most favorite lithosphere because it may result in the thinnest lithosphere so that the temperature at the near surface of the crust can be hot enough to generate the shallow ore deposits there. The upward throughflow (i.e. mantle mass flux) can have a significant effect on the thermal structure within the lithosphere. In addition, the emplacement of hot materials from the mantle may further reduce the thickness of the lithosphere. Originality/value - The present analytical solutions can be used to: validate numerical methods for solving large-scale heat transfer problems; provide correct thermal boundary conditions for numerically solving ore body formation and mineralization problems on the crustal scale; and investigate the fundamental issues related to thermal distributions within the lithosphere. The proposed finite element analysis can be effectively used to consider the geometrical and material complexities of large-scale heat transfer problems with temperature-dependent fluid densities.