851 resultados para Habitat Use
Resumo:
The biodiversity of farmland ecosystems has decreased remarkably during the latter half of the 20th century, and this development is due to intensive farming with its various environmental effects. In the countries of the EU the Common Agricultural Policy (CAP) is the main determinant affecting farmland biodiversity, since the agricultural policy defines guidelines of agricultural practices. In addition to policies promoting intensive farming, CAP also includes national agri-environment schemes (AES), in which a part of subsidies paid to farmers is directed to acts that are presumed to promote environmental protection and biodiversity. In order to shape AES into relevant and powerful tools for biodiversity protection, detailed studies on the effects of agriculture on species and species assemblages are needed. In my thesis I investigated the importance of habitat heterogeneity and effects of different habitat and landscape characteristics on farmland bird abundance and diversity in typical cereal cultivation-dominated southern Finnish agricultural environments. The extensive data used were collected by territory mapping. My two main study species were the drastically declined ortolan bunting (Emberiza hortulana) and the phenomenally increased tree sparrow (Passer montanus); in addition I studied assemblages of 20 species breeding in open arable and edge/bush habitats. In light of my results I discuss whether the Finnish AES take into account the habitat needs of farmland birds, and I provide suggestions for improvement of the future AES. My results show that heterogeneity of both uncultivated and cultivated habitats increases abundance and species richness among farmland birds, but in this respect the amount and diversity of uncultivated habitats are essential. Ditches in particular are a keystone structure for farmland birds in boreal landscapes. Ditches lined by trees or bushes increased ortolan bunting abundance. Loss of that kind of ditches (and clearance of forest and bush patches), reduced breeding ortolan buntings, mainly by decreasing availability of song-posts that are important for the breeding groups of the species. Heterogeneity of uncultivated habitats, most importantly open ditches and the habitat patch richness, increased densities and species richnesses of species assemblages of open arable and edge/bush habitats. Human impact (winter-feeding, nest-boxes) affected favourably the tree sparrow s rapid range expansion in southern Finland, but any habitat types had no significant effects. At the moment the Finnish agri-environmental policy does not conserve farmland ditches as a habitat type. Instead, sub-surface drainage is financially promoted. This is a fatal mistake as far as farmland biodiversity is concerned. In addition to the maintenance of ditches, at least the following aspects should be included more than is done previously in the measures of the future AES: 1) promotion of diverse crop rotation (especially by promoting animal husbandry), 2) maintenance of tree and bush vegetation in islets and along ditches, 3) promotion of organic farming.
Resumo:
Although changes in urban forest vegetation have been documented in previous Finnish studies, the reasons for these changes have not been studied explicitly. Especially, the consequences of forest fragmentation, i.e. the fact that forest edges receive more solar radiation, wind and air-borne nutrients than interiors have been ignored. In order to limit the change in urban forest vegetation we need to know why it occurs. Therefore, the effects of edges and recreational use of urban forests on vegetation were investigated together in this thesis to reveal the relative strengths of these effects and to provide recommendations for forest management. Data were collected in the greater Helsinki area (in the cities of Helsinki, Vantaa and Espoo, and in the municipalities of Sipoo and Tuusula) and in the Lahti region (in the city of Lahti and in the municipality of Hollola) by means of systematic and randomized vegetation and soil sampling and tree measurements. Sample plots were placed from the forest edges to the interiors to investigate the effects of forest edges, and on paths of different levels of wear and off these paths to investigate the effects of trampling. The natural vegetation of mesic and sub-xeric forest site types studied was sensitive both to the effects of the edge and to trampling. The abundances of dwarf shrubs and bryophytes decreased, while light- and nitrogen-demanding herbs and grasses - and especially Sorbus aucuparia – were favoured at the edges and next to the paths. Results indicated that typical forest site types at the edges are changing toward more nitrophilic vegetation communities. Covers of the most abundant forest species decreased considerably – even tens of percentages – from interiors to the edges indicating strong edge effects. These effects penetrated at least up to 50 m from the forest edges into the interiors, especially at south to west facing open edges. The effects of trampling were pronounced on paths and even low levels of trampling decreased the abundances of certain species considerably. The effects of trampling extended up to 8 m from path edges. Results showed that the fragmentation of urban forest remnants into small and narrow patches should be avoided in order to maintain natural forest understorey vegetation in the urban setting. Thus, urban forest fragments left within urban development should be at least 3 ha in size, and as circular as possible. Where the preservation of representative original forest interior vegetation is a management aim, closed edges with conifers can act as an effective barrier against solar radiation, wind and urban load, thereby restricting the effects of the edge. Tree volume at the edge should be at least 225-250 m3 ha-1 and the proportion of conifers (especially spruce) 80% or more of the tree species composition. Closed, spruce-dominated edges may also prevent the excessive growth of S. aucuparia saplings at urban forest edges. In addition, closed edges may guide people’s movements to the maintained paths, thus preventing the spontaneous creation of dense path networks. In urban areas the effects of edges and trampling on biodiversity may be considerable, and are important to consider when the aim of management is to prevent the development of homogeneous herb-grass dominated vegetation communities, as was observed at the investigated edges.
Resumo:
Land-use changes influence local biodiversity directly, and also cumulatively, contribute to regional and global changes in natural systems and quality of life. Consequent to these, direct impacts on the natural resources that support the health and integrity of living beings are evident in recent times. The Western Ghats being one of the global biodiversity hotspots, is reeling under a tremendous pressure from human induced changes in terms of developmental projects like hydel or thermal power plants, big dams, mining activities, unplanned agricultural practices,monoculture plantations, illegal timber logging, etc. This has led to the once contiguous forest habitats to be fragmented in patches, which in turn has led to the shrinkage of original habitat for the wildlife, change in the hydrological regime of the catchment, decreased inflow in streams,human-animal conflicts, etc. Under such circumstances, a proper management practice is called for requiring suitable biological indicators to show the impact of these changes, set priority regions and in developing models for conservation planning. Amphibians are regarded as one of the best biological indicators due to their sensitivity to even the slightest changes in the environment and hence they could be used as surrogates in conservation and management practices. They are the predominating vertebrates with a high degree of endemism (78%) in Western Ghats. The present study is an attempt to bring in the impacts of various land-uses on anuran distribution in three river basins. Sampling was carried out for amphibians during all seasons of 2003-2006 in basins of Sharavathi, Aghanashini and Bedthi. There are as many as 46 species in the region, one of which is new to science and nearly 59% of them are endemic to the Western Ghats. They belong to nine families, Dicroglossidae being represented by 14 species,followed by Rhacophoridae (9 species) and Ranidae (5 species). Species richness is high in Sharavathi river basin, with 36 species, followed by Bedthi 33 and Aghanashini 27. The impact of land-use changes, was investigated in the upper catchment of Sharavathi river basin. Species diversity indices, relative abundance values, percentage endemics gave clear indication of differences in each sub-catchment. Karl Pearson’s correlation coefficient (r) was calculated between species richness, endemics, environmental descriptors, land-use classes and fragmentation metrics. Principal component analysis was performed to depict the influence of these variables. Results show that sub-catchments with lesser percentage of forest, low canopy cover, higher amount of agricultural area, low rainfall have low species richness, less endemic species and abundant non-endemic species, whereas endemism, species richness and abundance of endemic species are more in the sub-catchments with high tree density, endemic trees, canopy cover, rainfall and lower amount of agriculture fields. This analysis aided in prioritising regions in the Sharavathi river basin for further conservation measures.
Resumo:
Spatial information at the landscape scale is extremely important for conservation planning, especially in the case of long-ranging vertebrates. The biodiversity-rich Anamalai hill ranges in the Western Ghats of southern India hold a viable population for the long-term conservation of the Asian elephant. Through rapid but extensive field surveys we mapped elephant habitat, corridors, vegetation and land-use patterns, estimated the elephant population density and structure, and assessed elephant-human conflict across this landscape. GIS and remote sensing analyses indicate that elephants are distributed among three blocks over a total area of about 4600 km(2). Approximately 92% remains contiguous because of four corridors; however, under 4000 km2 of this area may be effectively used by elephants. Nine landscape elements were identified, including five natural vegetation types, of which tropical moist deciduous forest is dominant. Population density assessed through the dung count method using line transects covering 275 km of walk across the effective elephant habitat of the landscape yielded a mean density of 1.1 (95% Cl = 0.99-1.2) elephant/km(2). Population structure from direct sighting of elephants showed that adult male elephants constitute just 2.9% and adult females 42.3% of the population with the rest being subadults (27.4%), juveniles (16%) and calves (11.4%). Sex ratios show an increasing skew toward females from juvenile (1:1.8) to sub-adult (1:2.4) and adult (1:14.7) indicating higher mortality of sub-adult and adult males that is most likely due to historical poaching for ivory. A rapid questionnaire survey and secondary data on elephant-human conflict from forest department records reveals that villages in and around the forest divisions on the eastern side of landscape experience higher levels of elephant-human conflict than those on the western side; this seems to relate to a greater degree of habitat fragmentation and percentage farmers cultivating annual crops in the east. We provide several recommendations that could help maintain population viability and reduce elephant-human conflict of the Anamalai elephant landscape. (C) 2013 Deutsche Gesellschaft far Saugetierkunde. Published by Elsevier GmbH. All rights reserved.
Resumo:
The Carr Lake Project aims to convert Carr Lake’s 450 acres of agriculture fields into a regional multi-use park that will benefit flood protection, water quality, and wildlife habitat, while also providing additional recreational areas for the local community. The Project is represented by an informal consortium of interested parties including the Watershed Institute of California State University Monterey Bay, The City of Salinas, 1000 Friends of Carr Lake, and the Big Sur Land Trust. (Document contains 54 pages)
Resumo:
This is a report delivered to California Department of Parks and Recreation. The purpose of this report is to document and describe the presence, location, and general characteristics for each of the wetland types currently found in the lagoon area. Comments are also made on the general use by different fauna. (Document contains 15 pages)
Resumo:
Evaluation of the potential for remote sensing to detect a relationship between wave action factors and plant re-establishment after a habitat enhancement at Lake Kissimmee, Florida. Using Geographic Information Systems (GIS) and remote sensing, wave action factors were found to be inversely related to the probability of plant re-establishment. However, correlation of wave action factors with areal coverage of aquatic plants based on field measurements, were unable to detect a significant relationship. Other factors aside from wave action, including littoral slope and the presence of offshore vegetation, may have influenced plant re-establishment in these sites. Remote sensing techniques may be useful to detect large changes in plants communities, however small changes in plant coverages may not be detectable using this technique.
Resumo:
The following discussion presents information on human-made reefs and their role--as one tool of many--in the management of both fisheries and habitat. Principal subjects covered in this paper include a definition of marine habitat improvement and determination of its attainment, the present applications of reef construction technology to environmental situations both generally and in three case-studies, and suggested desirable attributes for incorporation into future use of this technology. (PDF has 11 pages.)
Resumo:
Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral/sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises. Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedimentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed. (PDF contains 60 pages.)
Resumo:
In this time of scarce resources, coastal resource managers must find ways to prioritize conservation, land use, and restoration efforts. The Habitat Priority Planner (HPP) is a free geospatial tool created by the National Oceanic and Atmospheric Administration’s Coastal Services Center that has received wide praise for its ease of use and broad applicability to conservation strategic planning, restoration, climate change scenarios, and other natural resource management actions. Not a geographic information system (GIS) user? Don’t worry―this tool was designed to be used in a team setting. One intermediate-level GIS user can push the buttons to show quick results while a roomful of resource managers and stakeholders provide input criteria that determine the results. The Habitat Priority Planner is a toolbar for ESRI’s ArcGIS platform that is composed of three modules: Habitat Classification, Habitat Analysis, and Data Explorer. The tool calculates basic ecological statistics that are used to examine how habitats function within a landscape. The tool pre‐packages several common landscape metrics into a user‐friendly interface for intermediate GIS users. In addition, HPP allows the user to build queries interactively using a graphical interface for demonstrating criteria selections quickly in a visual manner that is useful in stakeholder interactions. Tool advocates and users include land trusts, conservation alliances, nonprofit organizations, and select National Estuarine Research Reserves and refuges of the U.S. Fish and Wildlife Service. Participants in this session will learn the basic requirements for HPP use and the multiple ways the HPP has been applied to geographies nationwide. (PDF contains 5 pages)
Resumo:
Although maritime regions support a large portion of the world’s human population, their value as habitat for other species is overlooked. Urban structures that are built in the marine environment are not designed or managed for the habitat they provide, and are built without considering the communities of marine organisms that could colonize them (Clynick et al., 2008). However, the urban waterfront may be capable of supporting a significant proportion of regional aquatic biodiversity (Duffy-Anderson et al., 2003). While urban shorelines will never return to their original condition, some scientists think that the habitat quality of urban waterfronts could be significantly improved through further research and some design modifications, and that many opportunities exist to make these modifications (Russel et al., 1983, Goff, 2008). Habitat enhancing marine structures (or HEMS) are a potentially promising approach to address the impact of cities on marine organisms including habitat fragmentation and degradation. HEMS are a type of habitat improvement project that are ecologically engineered to improve the habitat quality of urban marine structures such as bulkheads and docks for marine organisms. More specifically, HEMS attempt to improve or enhance the physical habitat that organisms depend on for survival in the inter- and sub-tidal waterfronts of densely populated areas. HEMS projects are targeted at areas where human-made structures cannot be significantly altered or removed. While these techniques can be used in suburban or rural areas restoration or removal is preferred in these settings, and HEMS are resorted to only if removal of the human-made structure is not an option. Recent research supports the use of HEMS projects. Researchers have examined the communities found on urban structures including docks, bulkheads, and breakwaters. Complete community shifts have been observed where the natural shoreline was sandy, silty, or muddy. There is also evidence of declines in community composition, ecosystem functioning, and increases in non-native species abundances in assemblages on urban marine structures. Researchers have identified two key differences between these substrates including the slope (seawalls are vertical; rocky shores contain multiple slopes) and microhabitat availability (seawalls have very little; rocky shores contain many different types). In response, researchers have suggested designing and building seawalls with gentler slopes or a combination of horizontal and vertical surfaces. Researchers have also suggested incorporating microhabitat, including cavities designed to retain water during low tide, crevices, and other analogous features (Chapman, 2003; Moreira et al., 2006) (PDF contains 4 pages)
Resumo:
Terns and skimmers nesting on saltmarsh islands often suffer large nest losses due to tidal and storm flooding. Nests located near the center of an island and on wrack (mats of dead vegetation, mostly eelgrass Zostera) are less susceptible to flooding than those near the edge of an island and those on bare soil or in saltmarsh cordgrass (Spartina alterniflora). In the 1980’s Burger and Gochfeld constructed artificial eelgrass mats on saltmarsh islands in Ocean County, New Jersey. These mats were used as nesting substrate by common terns (Sterna hirundo) and black skimmers (Rynchops niger). Every year since 2002 I have transported eelgrass to one of their original sites to make artificial mats. This site, Pettit Island, typically supports between 125 and 200 pairs of common terns. There has often been very little natural wrack present on the island at the start of the breeding season, and in most years natural wrack has been most common along the edges of the island. The terns readily used the artificial mats for nesting substrate. Because I placed artificial mats in the center of the island, the terns have often avoided the large nest losses incurred by terns nesting in peripheral locations. However, during particularly severe flooding events even centrally located nests on mats are vulnerable. Construction of eelgrass mats represents an easy habitat manipulation that can improve the nesting success of marsh-nesting seabirds.
Resumo:
The plant Crassula helmsii (Kirk) Cochayne, was likely to become widely distributed and to dominate many damp and wet areas of nature reserves, recreational waters and agricultural drainage of Britain. The aim of this report was to study Australian Swamp Stonecrop in its natural habitat where it is in balance with its environment. This contrasts with its rapid and widespread distribution in the U.K. where its growth interferes with the use of fisheries and amenity lakes but also reduces the value of nature reserves and sites of special scientific interest by suppressing native flora. It was proposed to observe its growth at a variety of sites over its natural distribution and to include some environmental factors, e.g. water-level, water-chemistry (nutrients, acidity and alkalinity), frost-tolerance, salinity, with the help of portable sensors, locally-available services or data. 8 weeks of travel in Australia allowed time to study the plant in its natural habitat including the coastal areas of the southern half of the continent i.e . Western Australia, South Australia, New South Wales, Victoria, Tasmania and southern Queensland. The overall objective was to determine the environmental range by visits to selected sites of Crassula helmsii over its geographic range.