404 resultados para HYPOCHLORITE
Resumo:
Pós-graduação em Ciência Odontólogica - FOA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this work was to evaluate the application of different concentrations of ascorbic acid on Orange Flesh melon. Whole Melons were sanifi ed with 500 mg L-1 of sodium hypochlorite for 10 minutes and the cuts into cubes with 100 mg L-1 for 1 minute before being tested under different concentrations of ascorbic acid (0, 1, 2 and 3%) in immersion at room temperature for 10 minutes. After drainage, the cuts were packed in PET packages lined with polyethylene fi lm of 18 µm and stored at 5 ± 1°C and 85 ± 5% of RH for 8 days, being evaluated every 2 days. Physicochemical, microbiological and sensorial analyses were performed. The experimental design utilized for the experiment was the completely randomized in factorial scheme. Ten replicates were used for non-destructive analyses and 3 replicates were used for destructive ones. The application of ascorbic acid reduced the loss of mass; the fruits presented a low population of psychrotrophic bacterias, fi lamentous, fungi and yeasts, reduction of soluble solids, pH and fi rmness and, consequently, extended postharvest life of the fruits by 2 days. The appearance, fl avor and taste were also affected. The application of 1% of ascorbic acid was the best treatment for the fresh cuts “Orange Flesh” melons.
Resumo:
Pós-graduação em Odontologia - FOAR
Citotoxicidade do ácido peracético: avaliação metabólica, estrutural e de morte em fibroblastos L929
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study aims to analyze the capacity of a helical coil heat exchanger to reach the requested heat transfer rates by a sodium hypochlorite production process. This heat exchanger was installed in an experimental way in order to reuse a source of low-temperatures water in such a way to become a more economical alternative than the existing cooling tower. Firstly, the concepts related to the theory of heat transfer applicable to the case were introduced. Then, the mapping of the main information about the production process and the technical specification of the current cooling system equipment's was realized. Using the dimensions of the heat exchanger installed today as reference, the calculations for determining the ideal length of the coil to different flows of hot fluid were performed. Finally, it was concluded that the heat exchanger currently employed does not provide heat transfer rates required for the maximum flow rate value supported by the cooling tower
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
This study aims to analyze the capacity of a helical coil heat exchanger to reach the requested heat transfer rates by a sodium hypochlorite production process. This heat exchanger was installed in an experimental way in order to reuse a source of low-temperatures water in such a way to become a more economical alternative than the existing cooling tower. Firstly, the concepts related to the theory of heat transfer applicable to the case were introduced. Then, the mapping of the main information about the production process and the technical specification of the current cooling system equipment's was realized. Using the dimensions of the heat exchanger installed today as reference, the calculations for determining the ideal length of the coil to different flows of hot fluid were performed. Finally, it was concluded that the heat exchanger currently employed does not provide heat transfer rates required for the maximum flow rate value supported by the cooling tower