983 resultados para HUMAN LUNG
Resumo:
Choline and betaine are important methyl donors that contribute to protein and phospholipid synthesis and DNA methylation. They can either be obtained through diet or synthesized de novo. Evidence from human and animal research indicates that choline metabolic pathways may be activated during a variety of diseases, including cancer. Studies have been conducted to investigate the role of dietary intake of choline and betaine on cancers, but results vary among studies by cancer types, and no such study had been conducted for lung cancer. We conducted a case-control study to explore the association between choline and betaine dietary intake and lung cancer. A total of 2807 cases and 2919 controls were included in the study. After adjusting for total calorie intake, age, sex, race and smoking status, multivariable logistic regression analysis revealed a significant negative association between choline/betaine intake and lung cancer. Specifically, we observed that higher choline intake was associated with reduced lung cancer odds, and the association did not differ significantly by smoking status. A similar negative trend was observed in the association between betaine intake and lung cancer after adjusting for total calorie intake, age, sex, smoking status, race, and pack-years of smoking. However, this association was strongly affected by smoking. No significant association was observed with increased betaine intake and lung cancer among never smokers, but higher betaine intake was strongly associated with reduced lung cancer odds among smokers, and lower odds ratios were observed among current smokers than among former smokers. Our results suggest that high intake of choline may be protective for lung cancer independent of smoking status, while high betaine intake may mitigate the adverse effect of smoking on lung cancer, and help prevent lung cancer among smokers.^
Resumo:
Embryonic stem cells (ESCs) possess two unique characteristics: infinite self-renewal and the potential to differentiate into almost every cell type (pluripotency). Recently, global expression analyses of metastatic breast and lung cancers revealed an ESC-like expression program or signature, specifically for cancers that are mutant for p53 function. Surprisingly, although p53 is widely recognized as the guardian of the genome, due to its roles in cell cycle checkpoints, programmed cell death or senescence, relatively little is known about p53 functions in normal cells, especially in ESCs. My hypothesis is that p53 has specific transcription regulatory functions in human ESCs (hESCs) that a) oppose pluripotency and b) protect the stem cell genome in response to DNA damage and stress signaling. In mouse ESCs, these roles are believed to coincide, as p53 promotes differentiation in response to DNA damage, but this is unexplored in hESCs. To determine the biological roles of p53, specifically in hESCs, we mapped genome-wide chromatin interactions of p53 by chromatin immunoprecipitation and massively parallel tag sequencing (ChIP-Seq), and did so under three VIdifferent conditions of hESC status: pluripotency, differentiation-initiated and DNA-damage-induced. ChIP-Seq showed that p53 is enriched at distinct, induction-specific gene loci during each of these different conditions. Microarray gene expression analysis and functional annotation of the distinct p53-target genes revealed that p53 regulates specific genes encoding developmental regulators, which are expressed in differentiation-initiated but not DNA- damaged hESCs. We further discovered that, in response to differentiation signaling, p53 binds regions of chromatin that are repressed but also poised for rapid activation by core pluripotency factors OCT4 and NANOG in pluripotent hESCs. In response to DNA damage, genes associated with migration and motility are targeted by p53; whereas, the prime targets of p53 in control of cell death are conserved for p53 regulation in both differentiation and DNA damage. Our genome-wide profiling and bioinformatics analyses show that p53 occupies a special set of developmental regulatory genes during early differentiation of hESCs and functions in an induction-specific manner. In conclusion, our research unveiled previously unknown functions of p53 in ESC biology, which augments our understanding of one of the most deregulated proteins in human cancers.
Resumo:
Matrix metalloproteinase-9 (MMP-9) plays an important role in tumor invasion and angiogenesis. Secretion of MMP-9 has been reported in various cancer types including lung cancer, brain cancer, colon cancer, and breast cancer. Heregulin is a growth factor that regulates growth and differentiation of normal breast cells as well as mammary tumor cells. To study the role of heregulin in breast cancer metastasis, we tested whether heregulin may regulate MMP-9 secretion. By screening a panel of breast cancer cell line for their ability to respond to heregulin and produce MMP-9, we have found that MMP-9 secretion can be induced by heregulin-β1 in two breast cancer cell lines, SKBr3 and MCF-7. In both cell lines, increase of MMP-9 activity as shown by zymography was accompanied by increased protein level as well as mRNA level of MMP-9. Using a reporter luciferase assay, we have identified that proximal −670bp promoter of MMP-9 had similar activity to a 2.2kb MMP-9 promoter in response to heregulin stimulation. Heregulin treatment of SKBr3 and MCF-7 activated multiple signaling pathways inside cells. These include the Erk pathway, the p38 kinase pathway, PKC pathway, and PI-3K pathway. To examine which pathways are involved in MMP-9 activation by heregulin, we have used a panel of chemical inhibitors to specifically inhibit each one of these pathways. Ro-31-8220 (PKC inhibitor) and SB203580 (p38 kinase inhibitor) completely blocked heregulin activation of MMP-9. On the other hand, PD098059 (MEK-1 inhibitor) partially blocked MMP-9 activation, whereas PI-3K inhibitor, wortmannin, had no effect. Therefore, at least three signaling pathways are involved in activation of MMP-9 by heregulin. Since MMP-9 is tightly associated with metastatic potential, our study also suggests that heregulin may enhance breast tumor metastasis through induction of MMP-9 expression. ^
Resumo:
A Western Array Screening system in conjunction with an in vitro lung carcinogenesis model, which consists of human bronchial epithelial (HBE) cells representing normal (NHBE), immortalized (BEAS-2B and 1799), transformed (1198), and tumorigenic (1170-I) was used to test the hypothesis that lung carcinogenesis involves specific changes in signaling proteins. Forty six proteins whose expression was upregulated by >2 fold and 23 proteins whose expression was downregulated by >2 fold in 1170-I compared to NHBE cells were identified. The levels of six proteins including bFGF (both intracellular and secreted), Akt and p70s6K in the PI3KJp70s6K pathway and the bFGF receptor (FGFR1) were upregulated in different stages of lung carcinogenesis. Akt activity and phospho-p70s6K were also increased in 1170-I compared to NHBE cells, suggesting that PI3K/p70s6K pathway is activated during lung carcinogenesis. bFGF treatment stimulated the growth of the 1170-I cells. Both tyrosine phosphorylation of FGFR1 and cell growth were inhibited in 1170-I cells after overexpression of dominant-negative(DN) FGFR1. Growth inhibition involved a G2 arrest related to decreased cdc2 activity, cdc25C downregulation, Wee1, p21(WAF1) and p27(Kip1) upregulation. Apoptosis was observed in tumorigenic but not in normal cells after overexpression of DNFGFR1. Confluent NHBE cells, were much less sensitive to the growth inhibition by DNFGFR1 compared to other cell lines analyzed. bFGF increased phospho-Akt and phospho-p70s6K in 1170-I cells. The Akt inhibitor LY294002 and the p70s6K inhibitor rapamycin inhibited bFGF-stimulated cell growth in 1170-I cells. Both agents downregulated the bFGF-induced increase in S phase by inducing G1 arrest. Also, LY294002 inhibited bFGF increased phospho-Akt, while both LY294002 and rapamycin inhibited bFGF increased phospho-p70s6K. Thus, cell proliferation stimulated by bFGF in 1170-I cells was at least partially mediated by PI3K/p70s6K pathway. Hsp90 was upregulated by bFGF in 1170-I cells. Its inhibitor geldanamycin inhibited the bFGF-stimulated growth via inducing apoptosis and G2 arrest through decreases in cdc2 expression/activity and p21 upregulation, and decreased Akt/phospho-Akt, p70s6K/phospho-p70s6K and Bad. Hsp90, p70s6K and Bad were found in the same complex, which may be important for signaling cell survival. Taken together, our study suggests that bFGF signaling, especially PI3K/p70s6K pathway, is important for lung carcinogenesis. ^
Resumo:
Mutations in the TP53 gene are very common in human cancers, and are associated with poor clinical outcome. Transgenic mouse models lacking the Trp53 gene or that express mutant Trp53 transgenes produce tumours with malignant features in many organs. We previously showed the transcriptome of a p53-deficient mouse skin carcinoma model to be similar to those of human cancers with TP53 mutations and associated with poor clinical outcomes. This report shows that much of the 682-gene signature of this murine skin carcinoma transcriptome is also present in breast and lung cancer mouse models in which p53 is inhibited. Further, we report validated gene-expression-based tests for predicting the clinical outcome of human breast and lung adenocarcinoma. It was found that human patients with cancer could be stratified based on the similarity of their transcriptome with the mouse skin carcinoma 682-gene signature. The results also provide new targets for the treatment of p53-defective tumours.
Resumo:
Alterations in pathways mediated by retinoblastoma susceptibility gene (RB) product are among the most common in human cancer. Mice with a single copy of the Rb gene are shown to develop a syndrome of multiple neuroendocrine neoplasia. The earliest Rb-deficient atypical cells were identified in the intermediate and anterior lobes of the pituitary, the thyroid and parathyroid glands, and the adrenal medulla within the first 3 months of postnatal development. These cells form gross tumors with various degrees of malignancy by postnatal day 350. By age of 380 days, 84% of Rb+/− mice exhibited lung metastases from C-cell thyroid carcinomas. Expression of a human RB transgene in the Rb+/− mice suppressed carcinogenesis in all tissues studied. Of particular clinical relevance, the frequency of lung metastases also was reduced to 12% in Rb+/− mice by repeated i.v. administration of lipid-entrapped, polycation-condensed RB complementary DNA. Thus, in spite of long latency periods during which secondary alterations can accumulate, the initial loss of Rb function remains essential for tumor progression in multiple types of neuroendocrine cells. Restoration of RB function in humans may prove an effective general approach to the treatment of RB-deficient disseminated tumors.
Resumo:
Protease-activated receptors 1–3 (PAR1, PAR2, and PAR3) are members of a unique G protein-coupled receptor family. They are characterized by a tethered peptide ligand at the extracellular amino terminus that is generated by minor proteolysis. A partial cDNA sequence of a fourth member of this family (PAR4) was identified in an expressed sequence tag database, and the full-length cDNA clone has been isolated from a lymphoma Daudi cell cDNA library. The ORF codes for a seven transmembrane domain protein of 385 amino acids with 33% amino acid sequence identity with PAR1, PAR2, and PAR3. A putative protease cleavage site (Arg-47/Gly-48) was identified within the extracellular amino terminus. COS cells transiently transfected with PAR4 resulted in the formation of intracellular inositol triphosphate when treated with either thrombin or trypsin. A PAR4 mutant in which the Arg-47 was replaced with Ala did not respond to thrombin or trypsin. A hexapeptide (GYPGQV) representing the newly exposed tethered ligand from the amino terminus of PAR4 after proteolysis by thrombin activated COS cells transfected with either wild-type or the mutant PAR4. Northern blot showed that PAR4 mRNA was expressed in a number of human tissues, with high levels being present in lung, pancreas, thyroid, testis, and small intestine. By fluorescence in situ hybridization, the human PAR4 gene was mapped to chromosome 19p12.
Resumo:
The transactivation activity of the p53 tumor suppressor protein is critical for regulating cell growth and apoptosis. We describe the identification of a transcription factor that is functionally similar to p53 and contains the same DNA binding and transcription activities specific for the p53 responsive DNA element (p53RE). This protein was highly purified through chromatography from HeLa cell extracts. The purified protein was able to bind specifically to the p53RE derived from a p21waf1 promoter and to stimulate p53RE-dependent transcription but not basal transcription in vitro. Its DNA-binding activity was inhibited by the wild type but not mutant p53RE-containing DNA oligomers. Also, this p53RE-binding activity was found in human p53 null Saos-2 osteosarcoma and H1299 small cell lung carcinoma cells. Interestingly, this activity exhibited a p53RE sequence preference that was distinct from the p53 protein. The activity is neither p53 nor p73, because anti-p53 or anti-73 antibodies were unable to detect this purified protein nor were the antibodies able to alter the p53-like activity, the p53RE-protein complex. These results demonstrate that, besides p73, an additional p53-like protein exists in cells, which is named NBP for non-p53, p53RE binding protein.
Resumo:
A computational system for the prediction of polymorphic loci directly and efficiently from human genomic sequence was developed and verified. A suite of programs, collectively called pompous (polymorphic marker prediction of ubiquitous simple sequences) detects tandem repeats ranging from dinucleotides up to 250 mers, scores them according to predicted level of polymorphism, and designs appropriate flanking primers for PCR amplification. This approach was validated on an approximately 750-kilobase region of human chromosome 3p21.3, involved in lung and breast carcinoma homozygous deletions. Target DNA from 36 paired B lymphoblastoid and lung cancer lines was amplified and allelotyped for 33 loci predicted by pompous to be variable in repeat size. We found that among those 36 predominately Caucasian individuals 22 of the 33 (67%) predicted loci were polymorphic with an average heterozygosity of 0.42. Allele loss in this region was found in 27/36 (75%) of the tumor lines using these markers. pompous provides the genetic researcher with an additional tool for the rapid and efficient identification of polymorphic markers, and through a World Wide Web site, investigators can use pompous to identify polymorphic markers for their research. A catalog of 13,261 potential polymorphic markers and associated primer sets has been created from the analysis of 141,779,504 base pairs of human genomic sequence in GenBank. This data is available on our Web site (pompous.swmed.edu) and will be updated periodically as GenBank is expanded and algorithm accuracy is improved.
Resumo:
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal lung. Murine cells expressing recombinant human wild-type CFTR ingested 30–100 times as many P. aeruginosa as cells lacking CFTR or expressing mutant ΔF508 CFTR protein. Purified CFTR inhibited ingestion of P. aeruginosa by human airway epithelial cells. The first extracellular domain of CFTR specifically bound to P. aeruginosa and a synthetic peptide of this region inhibited P. aeruginosa internalization in vivo, leading to increased bacterial lung burdens. CFTR clears P. aeruginosa from the lung, indicating a direct connection between mutations in CFTR and the clinical consequences of CF.
Resumo:
A human and a mouse gene have been isolated based on homology to a recombinational repair gene from the corn smut Ustilago maydis. The new human (h) gene, termed hREC2, bears striking resemblance to several others, including hRAD51 and hLIM15. hREC2 is located on human chromosome 14 at q23–24. The overall amino acid sequence reveals characteristic elements of a RECA-like gene yet harbors an src-like phosphorylation site curiously absent from hRAD51 and hLIM15. Unlike these two relatives, hREC2 is expressed in a wide range of tissues including lung, liver, placenta, pancreas, leukocytes, colon, small intestine, brain, and heart, as well as thymus, prostate, spleen, and uterus. Of greatest interest is that hREC2 is undetectable by reverse transcription-coupled PCR in tissue culture unless the cells are treated by ionizing radiation.
Resumo:
Pulmonary neuroepithelial bodies (NEB) are widely distributed throughout the airway mucosa of human and animal lungs. Based on the observation that NEB cells have a candidate oxygen sensor enzyme complex (NADPH oxidase) and an oxygen-sensitive K+ current, it has been suggested that NEB may function as airway chemoreceptors. Here we report that mRNAs for both the hydrogen peroxide sensitive voltage gated potassium channel subunit (KH2O2) KV3.3a and membrane components of NADPH oxidase (gp91phox and p22phox) are coexpressed in the NEB cells of fetal rabbit and neonatal human lungs. Using a microfluorometry and dihydrorhodamine 123 as a probe to assess H2O2 generation, NEB cells exhibited oxidase activity under basal conditions. The oxidase in NEB cells was significantly stimulated by exposure to phorbol esther (0.1 μM) and inhibited by diphenyliodonium (5 μM). Studies using whole-cell voltage clamp showed that the K+ current of cultured fetal rabbit NEB cells exhibited inactivating properties similar to KV3.3a transcripts expressed in Xenopus oocyte model. Exposure of NEB cells to hydrogen peroxide (H2O2, the dismuted by-product of the oxidase) under normoxia resulted in an increase of the outward K+ current indicating that H2O2 could be the transmitter modulating the O2-sensitive K+ channel. Expressed mRNAs or orresponding protein products for the NADPH oxidase membrane cytochrome b as well as mRNA encoding KV3.3a were identified in small cell lung carcinoma cell lines. The studies presented here provide strong evidence for an oxidase-O2 sensitive potassium channel molecular complex operating as an O2 sensor in NEB cells, which function as chemoreceptors in airways and in NEB related tumors. Such a complex may represent an evolutionary conserved biochemical link for a membrane bound O2-signaling mechanism proposed for other cells and life forms.
Resumo:
Human β-defensins (HBDs) are antimicrobial peptides that may play a role in mucosal defense. Diminished activity of these peptides has been implicated in the pathogenesis of cystic fibrosis (CF) lung disease. We show that HBD-1 and HBD-2 mRNAs are expressed in excised surface and submucosal gland epithelia from non-CF and CF patients. The pro-inflammatory cytokine interleukin-1β stimulated the expression of HBD-2 but not HBD-1 mRNA and peptide in primary cultures of airway epithelia. HBD-1 was found in bronchoalveolar lavage (BAL) fluid from normal volunteers, CF patients, and patients with inflammatory lung diseases, whereas HBD-2 was detected in BAL fluid from patients with CF or inflammatory lung diseases, but not in normal volunteers. Both HBD-1 and HBD-2 were found in BAL fluid in concentrations of several ng/ml, and both recombinant peptides showed salt-sensitive bactericidal activity. These data suggest that in the lung HBD-2 expression is induced by inflammation, whereas HBD-1 may serve as a defense in the absence of inflammation.
Resumo:
An androgen-repressed human prostate cancer cell line, ARCaP, was established and characterized. This cell line was derived from the ascites fluid of a patient with advanced metastatic disease. In contrast to the behavior of androgen-dependent LNCaP and its androgen-independent C4-2 subline, androgen and estrogen suppress the growth of ARCaP cells in a dose-dependent manner in vivo and in vitro. ARCaP is tumorigenic and highly metastatic. It metastasizes to the lymph node, lung, pancreas, liver, kidney, and bone, and forms ascites fluid in athymic hosts. ARCaP cells express low levels of androgen receptor mRNA and prostate-specific antigen mRNA and protein. Immunohistochemical staining shows that ARCaP cells stain intensely for epidermal growth factor receptor, c-erb B2/neu, and c-erb B3. Staining is negative for chromogranin A and positive for bombesin, serotonin, neuron-specific enolase, and the c-met protooncogene (a hepatic growth factor/scatter factor receptor). ARCaP cells also secrete high levels of gelatinase A and B and some stromelysin, which suggests that this cell line may contain markers representing invasive adenocarcinoma with selective neuronendocrine phenotypes. Along with its repression of growth, androgen is also found to repress the expression of prostate-specific antigen in ARCaP cells as detected by a prostate-specific antigen promoter–β-galactosidase reporter assay. Our results suggest that the androgen-repressed state may be central to prostate cancer progression and that advanced prostate cancer can progress from an androgen-independent to an androgen-repressed state.
Resumo:
A covalent conjugate (NR-LU-10/SA) was prepared between streptavidin (SA) and NR-LU-10, a mAb that binds an antigen expressed on the surface of most human carcinomas. NR-LU-10/SA was injected into nude mice bearing human tumor xenografts. Injection of biotinylated galactosyl-human serum albumin reduced the circulating levels of conjugate by 95%. Subsequent administration of 90Y-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-biotin achieved peak uptake at the tumor within 2 hr while >80% of the radioactivity was eliminated in the urine. A single dose of 600–800 μCi of 90Y-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-biotin produced cures in 10/10 mice with established (>200 mm3) s.c. human small cell lung or colon cancer xenografts and 8/10 cures in mice with human breast cancer xenografts without significant toxicity.