912 resultados para HIGH-VOLTAGE AND HIGH-CURRENT
Resumo:
One in five strokes affects the posterior circulation. Diagnosing posterior circulation stroke can be challenging, as the vascular anatomy can be variable, and because presenting symptoms are often non-specific and fluctuating. Nevertheless, making the correct diagnosis is important, as these strokes have a high chance of recurrence, can be life threatening, and can lead to equally life-threatening complications. Investigation and management largely follow those for stroke in general, although some specific differences exist. These include the preferred use of MRI for diagnosing posterior fossa lesions, the management of basilar artery thrombosis, which may have a longer time window for recanalisation therapy, and the use of endovascular therapies for secondary prevention, which, so far, have not shown any benefit in the treatment of vertebral or basilar artery stenosis. In this review, we summarise the anatomy, aetiology and presentation of posterior circulation stroke, and discuss current approaches to management.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The calcium-dependent afterhyperpolarization (AHP) that follows trains of action potentials is responsible for controlling action potential firing patterns in many neuronal cell types. We have previously shown that the slow AHP contributes to spike frequency adaptation in pyramidal neurons in the rat lateral amygdala. In addition, a dendritic voltage-gated potassium current mediated by Kv1.2-containing channels also suppresses action potential firing in these neurons. In this paper we show that this voltage-gated potassium current and the slow AHP act together to control spike frequency adaptation in lateral amygdala pyramidal neurons. The two currents have similar effects on action potential number when firing is evoked either by depolarizing current injections or by synaptic stimulation. However, they differ in their control of firing frequency, with the voltage-gated potassium current but not the slow AHP determining the initial frequency of action potential firing. This dual mechanism of controlling firing patterns is unique to lateral amygdala neurons and is likely to contribute to the very low levels of firing seen in lateral amygdala neurons in vivo.
Operation of polymer electrolyte membrane fuel cells with dry feeds: Design and operating strategies
Resumo:
The operation of polymer electrolyte membrane fuel cells (PEMFCs) with dry feeds has been examined with different fuel cell flow channel designs as functions of pressure, temperature and flow rate. Auto-humidified (or self-humidifying) PEMFC operation is improved at higher pressures and low gas velocities where axial dispersion enhances back-mixing of the product water with the dry feed. We demonstrate auto-humidified operation of the channel-less, self-draining fuel cell, based on a stirred tank reactor; data is presented showing auto-humidified operation from 25 to 115 degrees C at 1 and 3 atm. Design and operating requirements are derived for the auto-humidified operation of the channel-less, self-draining fuel cell. The auto-humidified self-draining fuel cell outperforms a fully humidified serpentine flow channel fuel cell at high current densities. The new design offers substantial benefits for simplicity of operation and control including: the ability to self-drain reducing flooding, the ability to uniformly disperse water removing current gradients and the ability to operate on dry feeds eliminating the need for humidifiers. Additionally, the design lends itself well to a modular design concept. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A detailed investigation has been undertaken into a field-induced electron emission (FIEE) mechanism that occurs at microscopically localised `sites' on uncoated, dielectric-coated and composite-coated metallic cathodes. An optical imaging technique has been used to observe and characterize the spatial and temporal behaviour of the populations of emission sites on these cathodes under various experimental conditions, e.g. pulsed-fields, gas environment etc. This study has shown that, for applied fields of 20MVm^-1, thin dielectric (750AA) and composite metal-insulator (MI) overlayers result in a dramatic increase in the total number of emission sites (typically 30cm^-2), and hence emission current. The emission process has been further investigated by a complementary electron spectroscopy technique which has revealed that the localised emission sites on these cathodes display field-dependent spectral shifts and half-widths, i.e. indicative of a `non-metallic' emission mechanism. Details are also given of a comprehensive investigation into the effects of the residual gas environment on the FIEE process from uncoated Cu-cathodes. This latter study has revealed that the well-known Gas Conditioning process can be performed with a wide range of gas species (e.g. O_2, N_2 etc), and furthermore, the degree of conditioning is influenced by both a `Voltage' and `Temperature' effect. These experimental findings have been shown to be particularly important to the technology of high-voltage vacuum-insulation and cold-cathode electron sources. The FIEE mechanism has been interpreted in terms of a hot-electron process that is associated with `electroformed' conducting channels in MI, MIM and MIMI surface microstructures.
Resumo:
Autism is a pervasive developmental disorder and Asperger’s syndrome is part of the spectrum of autism disorders. This thesis aims to: • Review and investigate current theories concerning visual function in individuals with Asperger’s syndrome and high functioning autism spectrum disorder and to translate the findings into clinical practice by developing a specific protocol for the eye examination of individuals of this population. • Investigate whether those with Asperger’s syndrome are more likely to suffer from Meares-Irlen syndrome and/or dyslexia. • Assess the integrity of the M-cell pathway in Asperger’s syndrome using perimetric tests available in optometric practice to investigate and also to describe the nature of any defects. • Evaluate eye movement strategies in Asperger’s whilst viewing both text and images. Also to evaluate the most appropriate methodology for investigating eye movements; namely optical digital eye tracking and electrophysiology methodologies. Findings of the investigations include • Eye examinations for individuals with Asperger’s syndrome should contain the same testing methods as for the general population, with special consideration for clear communication. • There is a depression of M-pathway visual field sensitivity in 57% (8/14) of people with Asperger’s syndrome, supporting previous evidence for an M-cell deficit in some individuals. • There is a raised prevalence of dyslexia in Asperger’s syndrome (26% of a sample of 31) but not necessarily of Meares-Irlen syndrome. • Gaze strategies are abnormal in Asperger’s syndrome, for both reading and viewing of images. With increased saccadic movement and decreased viewing of faces in comparison to background detail.
Resumo:
The nature and kinetics of electrode reactions and processes occurring for four lightweight anode systems which have been utilised in reinforced concrete cathodic protection systems have been studied. The anodes investigated were flame sprayed zinc, conductive paint and two activated titanium meshes. The electrochemical properties of each material were investigated in rapidly stirred de-oxygenated electrolytes using anodic potentiodynamic polarisation. Conductive coating electrodes were formed on glass microscope slides, whilst mesh strands were immersed directly. Oxygen evolution occurred preferentially for both mesh anodes in saturated Ca (OH)2/CaC12 solutions but was severely inhibited in less alkaline solutions and significant current only passed in chloride solutions. The main reactions for conductive paint was based on oxygen evolution in all electrolytes, although chlorides increased the electrical activity. Self-corrosion of zinc was controlled by electrolyte composition and the experimental set-up, chlorides increasing the electrical activity. Impressed current cathodic protection was applied to 25 externally exposed concrete slabs over a period of 18 months to investigate anode degradation mechanisms at normal and high current densities. Specimen chloride content, curing and reinforcement depth were also variables. Several destructive and non-destructive methods for assessing the performance of anodes were evaluated including a site instrument for quantitative "instant-off- potential measurements. The impact of cathodic protection on the concrete substrate was determined for a number of specimens using appropriate methods. Anodic degradation rates were primarily influenced by current density, followed by cemendtious alkalinity, chloride levels and by current distribution. Degradation of cementitious overlays and conductive paint substrates proceeded by sequential neutralisation of cement phases, with some evidence of paint binder oxidation. Sprayed zinc progressively formed an insulating layer of hydroxide complexes, which underwent pitting_ attack in the presence of sufficient chlorides, whilst substrate degradation was minimal. Adhesion of all anode systems decreased with increasing current density. The influence of anode material on the ionic gradients which can develop during cathodic protection was investigated. A constant current was passed through saturated cement paste prisms containing calcium chloride to central cathodes via anodes applied or embedded at each end. Pore solution was obtained from successive cut paste slices for anion and cation analyses. Various experimental errors reduced the value of the results. Characteristic S-shaped profiles were not observed and chloride ion profiles were ambiguous. Mesh anode specimens were significantly more durable than the conductive coatings in the high humidity environment. Limited results suggested zinc ion migration to the cathode region. Electrical data from each investigation clearly indicated a decreasing order of anode efficiency by specific anode material.
Resumo:
Despite recent success, rapidly disintegrating lyophilized tablets still face problems of low mechanical strength and higher disintegration times resulting in poor patient compliance. The aim of the current work was to carry out a systematic study to understand the factors controlling mechanical properties of these formulations. The work investigated the influence of two bloom strengths of gelatin: low (60 bloom) and high (225 bloom) at different stock solution concentrations (2, 5, 7.5, and 10 %w/w). This was followed by investigation of addition of five saccharides (xylitol, glucose, trehalose, maltotriose and mannitol) at varied concentration range (10-80 %w/w) to decipher their influence on disintegration time, mechanical and thermal properties of the formulation. The results indicated that the disintegration time of the tablets dramatically decreased by decreasing the concentration and bloom strength of gelatin in the stock solution. However the mechanical properties of the tablets were mainly influenced by the concentration of gelatin rather than the bloom strength. The addition of saccharides resulted in enhancement of tablet properties and was concentration dependent. All the saccharides improved the fractubility of the tablets significantly at high concentration (equal or higher than 40% w/w). However, only high concentration (equal or higher than 40% w/w) of trehalose, maltotriose and mannitol significantly enhanced the hardness. Additionally, mannitol crytallised during freeze drying and consequently produced elegant tablets, whilst the other saccarides exhibited lyoprotectant activity as they were able to retain amorphous status. Based on the above findings, an optimized formulation was also successfully developed and characterized to deliver 100 microg dose of Clonidine HCl.
Resumo:
There are several methods of providing series compensation for transmission lines using power electronic switches. Four methods of series compensation have been examined in this thesis, the thyristor controlled series capacitor, a voltage sourced inverter series compensator using a capacitor as the series element, a current sourced inverter series compensator and a voltage sourced inverter using an inductor as the series element. All the compensators examined will provide a continuously variable series voltage which is controlled by the switching of the electronic switches. Two of the circuits will offer both capacitive and inductive compensation, the thyristor controlled series capacitor and the current sourced inverter series compensator. The other two will produce either capacitive or inductive series compensation. The thyristor controlled series capacitor offers the widest range of series compensation. However, there is a band of unavailable compensation between 0 and 1 pu capacitive compensation. Compared to the other compensators examined the harmonic content of the compensating voltage is quite high. An algebraic analysis showed that there is more than one state the thyristor controlled series capacitor can operate in. This state has the undesirable effect of introducing large losses. The voltage sourced inverter series compensator using a capacitor as the series element will provide only capacitive compensation. It uses two capacitors which increase the cost of the compensator significantly above the other three. This circuit has the advantage of very low harmonic distortion. The current sourced inverter series compensator will provide both capacitive and inductive series compensation. The harmonic content of the compensating voltage is second only to the voltage sourced inverter series compensator using a capacitor as the series element. The voltage sourced inverter series compensator using an inductor as the series element will only provide inductive compensation, and it is the least expensive compensator examined. Unfortunately, the harmonics introduced by this circuit are considerable.
Resumo:
Background and objective: Safe prescribing requires accurate and practical information about drugs. Our objective was to measure the utility of current sources of prescribing guidance when used to inform practical prescribing decisions, and to compare current sources of prescribing guidance in the UK with idealized prescribing guidance. Methods: We developed 25 clinical scenarios. Two independent assessors rated and ranked the performance of five common sources of prescribing guidance in the UK when used to answer the clinical scenarios. A third adjudicator facilitated review of any disparities. An idealized list of contents for prescribing guidance was developed and sent for comments to academics and users of prescribing guidance. Following consultation an operational check was used to assess compliance with the idealized criteria. The main outcome measures were relative utility in answering the clinical scenarios and compliance with the idealized prescribing guidance. Results: Current sources of prescribing guidance used in the UK differ in their utility, when measured using clinical scenarios. The British National Formulary (BNF) and EMIS LV were the best performing sources in terms of both ranking [mean rank 1·24 and 2·20] and rating [%excellent or adequate 100% and 72%]. Current sources differed in the extent to which they fulfilled criteria for ideal prescribing guidance, but the BNF, and EMIS LV to a lesser extent, closely matched the criteria. Discussion: We have demonstrated how clinical scenarios can be used to assess prescribing guidance resources. Producers of prescribing guidance documents should consider our idealized template. Prescribers require high-quality information to support their practice. Conclusion: Our test was helpful in distinguishing between prescribing resources. Producers of prescribing guidance should consider the utility of their products to end-users, particularly in those more complex areas where prescribers may need most support. Existing UK prescribing guidance resources differ in their ability to provide assistance to prescribers. © 2010 Blackwell Publishing Ltd.
Resumo:
Capillary electrophoresis (CE) is a modern analytical technique, which is electrokinetic separation generated by high voltage and taken place inside the small capillaries. In this dissertation, several advanced capillary electrophoresis methods are presented using different approaches of CE and UV and mass spectrometry are utilized as the detection methods. ^ Capillary electrochromatography (CEC), as one of the CE modes, is a recent developed technique which is a hybrid of capillary electrophoresis and high performance liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ photoinitiation polymerization method. The column was then applied for the separation of six antidepressant compounds. ^ Meanwhile, a simple chiral separation method is developed and presented in Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not only twelve cathinone analytes were separated, but also isomers of several analytes were enantiomerically separated. To better understand the molecular information on the analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial filling technique (PFT) were employed to reduce the contamination of MS ionization source. Accurate molecular information was obtained. ^ It is necessary to propose, develop, and optimize new techniques that are suitable for trace-level analysis of samples in forensic, pharmaceutical, and environmental applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower amounts of samples, it simplifies sample preparation, and it has the flexibility to perform separations of neutral and charged molecules as well as enantiomers. ^ Overall, the study demonstrates the versatility of capillary electrophoresis methods in forensic, pharmaceutical, and environmental applications.^
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.
Resumo:
This study examines the performance of series of two geomagnetic indices and series synthesized from a semi-empirical model of magnetospheric currents, in explaining the geomagnetic activity observed at Northern Hemipshere's mid-latitude ground-based stations. We analyse data, for the 2007 to 2014 period, from four magnetic observatories (Coimbra, Portugal; Panagyurishte, Bulgary; Novosibirsk, Russia and Boulder, USA), at geomagnetic latitudes between 40° and 50° N. The quiet daily (QD) variation is firstly removed from the time series of the geomagnetic horizontal component (H) using natural orthogonal components (NOC) tools. We compare the resulting series with series of storm-time disturbance (Dst) and ring current (RC) indices and with H series synthesized from the Tsyganenko and Sitnov (2005, doi:10.1029/2004JA010798) (TS05) semi-empirical model of storm-time geomagnetic field. In the analysis, we separate days with low and high local K-index values. Our results show that NOC models are as efficient as standard models of QD variation in preparing raw data to be compared with proxies, but with much less complexity. For the two stations in Europe, we obtain indication that NOC models could be able to separate ionospheric and magnetospheric contributions. Dst and RC series explain the four observatory H-series successfully, with values for the mean of significant correlation coefficients, from 0.5 to 0.6 during low geomagnetic activity (K less than 4) and from 0.6 to 0.7 for geomagnetic active days (K greater than or equal to 4). With regard to the performance of TS05, our results show that the four observatories separate into two groups: Coimbra and Panagyurishte, in one group, for which the magnetospheric/ionospheric ratio in QD variation is smaller, a dominantly QD ionospheric contribution can be removed and TS05 simulations are the best proxy; Boulder and Novosibirsk,in the other group, for which the ionospheric and magnetospheric contributions in QD variation can not be differentiated and correlations with TS05 series can not be made to improve. The main contributor to magnetospheric QD signal are Birkeland currents. The relatively good success of TS05 model in explaining ground-based irregular geomagnetic activity at mid-latitudes makes it an effective tool to classify storms according to their main sources. For Coimbra and Panagyurishte in particular, where ionospheric and magnetospheric daily contributions seem easier to separate, we can aspire to use the TS05 model for ensemble generation in space weather (SW) forecasting and interpretation of past SW events.