977 resultados para HIGH-SPIN
Resumo:
This dissertation consists of two parts. The first part presents an explicit procedure for applying multi-Regge theory to production processes. As an illustrative example, the case of three body final states is developed in detail, both with respect to kinematics and multi-Regge dynamics. Next, the experimental consistency of the multi-Regge hypothesis is tested in a specific high energy reaction; the hypothesis is shown to provide a good qualitative fit to the data. In addition, the results demonstrate a severe suppression of double Pomeranchon exchange, and show the coupling of two "Reggeons" to an external particle to be strongly damped as the particle's mass increases. Finally, with the use of two body Regge parameters, order of magnitude estimates of the multi-Regge cross section for various reactions are given.
The second part presents a diffraction model for high energy proton-proton scattering. This model developed by Chou and Yang assumes high energy elastic scattering results from absorption of the incident wave into the many available inelastic channels, with the absorption proportional to the amount of interpenetrating hadronic matter. The assumption that the hadronic matter distribution is proportional to the charge distribution relates the scattering amplitude for pp scattering to the proton form factor. The Chou-Yang model with the empirical proton form factor as input is then applied to calculate a high energy, fixed momentum transfer limit for the scattering cross section, This limiting cross section exhibits the same "dip" or "break" structure indicated in present experiments, but falls significantly below them in magnitude. Finally, possible spin dependence is introduced through a weak spin-orbit type term which gives rather good agreement with pp polarization data.
Resumo:
Magnetic resonance techniques have given us a powerful means for investigating dynamical processes in gases, liquids and solids. Dynamical effects manifest themselves in both resonance line shifts and linewidths, and, accordingly, require detailed analyses to extract desired information. The success of a magnetic resonance experiment depends critically on relaxation mechanisms to maintain thermal equilibrium between spin states. Consequently, there must be an interaction between the excited spin states and their immediate molecular environment which promote changes in spin orientation while excess magnetic energy is coupled into other degrees of freedom by non-radiative processes. This is well known as spin-lattice relaxation. Certain dynamical processes cause fluctuations in the spin state energy levels leading to spin-spin relaxation and, here again, the environment at the molecular level plays a significant role in the magnitude of interaction. Relatively few electron spin relaxation studies of solutions have been conducted and the present work is addressed toward the extension of our knowledge in this area and the retrieval of dynamical information from line shape analyses on a time scale comparable to diffusion controlled phenomena.
Specifically, the electron spin relaxation of three Mn+23d5 complexes, Mn(CH3CN)6+2, MnCl4-2 in acetonitrile has been studied in considerable detail. The effective spin Hamiltonian constants were carefully evaluated under a wide range of experimental conditions. Resonance widths of these Mn+2 complexes were studied in the presence of various excess ligand ions and as a function of concentration, viscosity, temperature and frequency (X-band, ~9.5 Ԍ Hz and K-band, ~35 Ԍ Hz).
A number of interesting conclusions were drawn from these studies. For the Et4NCl-4-2 system several relaxation mechanisms leading to resonance broadening were observed. One source appears to arise through spin-orbit interactions caused by modulation of the ligand field resulting from transient distortions of the complex imparted by solvent fluctuations in the immediate surroundings of the paramagnetic ion. An additional spin relaxation was assigned to the formation of ion pairs [Et4N+…MnCl4-2] and it was possible to estimate the dissociation constant for this specie in acetonitrile.
The Bu4NBr-MnBr4-2 study was considerably more interesting. As in the former case, solvent fluctuations and ion-pairing of the paramagnetic complex [Bu4N+…MnBr4-2] provide significant relaxation for the electronic spin system. Most interesting, without doubt, is the onset of a new relaxation mechanism leading to resonance broadening which is best interpreted as chemical exchange. Thus, assuming that resonance widths were simply governed by electron spin state lifetimes, we were able to extract dynamical information from an interaction in which the initial and final states are the same
MnBr4-2 + Br- = MnBr4-2 + Br-.
The bimolecular rate constants were obtained at six different temperatures and their magnitudes suggested that the exchange is probably diffusion controlled with essentially a zero energy of activation. The most important source of spin relaxation in this system stems directly from dipolar interactions between the manganese 3d5 electrons. Moreover, the dipolar broadening is strongly frequency dependent indicating a deviation between the transverse and longitudinal relaxation times. We are led to the conclusion that the 3d5 spin states of ion-paired MnBr4-2 are significantly correlated so that dynamical processes are also entering the picture. It was possible to estimate the correlation time, Td, characterizing this dynamical process.
In Part II we study nuclear magnetic relaxation of bromine ions in the MnBr4-2-Bu4NBr-acetonitrile system. Essentially we monitor the 79Br and 81Br linewidths in response to the [MnBr4-2]/[Br-] ratio with the express purpose of supporting our contention that exchange is occurring between "free" bromine ions in the solvent and bromine in the first coordination sphere of the paramagnetic anion. The complexity of the system elicited a two-part study: (1) the linewidth behavior of Bu4NBr in anhydrous CH3CN in the absence of MnBr4-2 and (2) in the presence of MnBr4-2. It was concluded in study (1) that dynamical association, Bu4NBr k1= Bu4N+ + Br-, was modulating field-gradient interactions at frequencies high enough to provide an estimation of the unimolecular rate constant, k1. A comparison of the two isotopic bromine linewidth-mole fraction results led to the conclusion that quadrupole interactions provided the dominant relaxation mechanism. In study (2) the "residual" bromine linewidths for both 79Br and 81Br are clearly controlled by quadrupole interactions which appear to be modulated by very rapid dynamical processes other than molecular reorientation. We conclude that the "residual" linewidth has its origin in chemical exchange and that bromine nuclei exchange rapidly between a "free" solvated ion and the paramagnetic complex, MnBr4-2.
Resumo:
Part I
Several approximate Hartree-Fock SCF wavefunctions for the ground electronic state of the water molecule have been obtained using an increasing number of multicenter s, p, and d Slater-type atomic orbitals as basis sets. The predicted charge distribution has been extensively tested at each stage by calculating the electric dipole moment, molecular quadrupole moment, diamagnetic shielding, Hellmann-Feynman forces, and electric field gradients at both the hydrogen and the oxygen nuclei. It was found that a carefully optimized minimal basis set suffices to describe the electronic charge distribution adequately except in the vicinity of the oxygen nucleus. Our calculations indicate, for example, that the correct prediction of the field gradient at this nucleus requires a more flexible linear combination of p-orbitals centered on this nucleus than that in the minimal basis set. Theoretical values for the molecular octopole moment components are also reported.
Part II
The perturbation-variational theory of R. M. Pitzer for nuclear spin-spin coupling constants is applied to the HD molecule. The zero-order molecular orbital is described in terms of a single 1s Slater-type basis function centered on each nucleus. The first-order molecular orbital is expressed in terms of these two functions plus one singular basis function each of the types e-r/r and e-r ln r centered on one of the nuclei. The new kinds of molecular integrals were evaluated to high accuracy using numerical and analytical means. The value of the HD spin-spin coupling constant calculated with this near-minimal set of basis functions is JHD = +96.6 cps. This represents an improvement over the previous calculated value of +120 cps obtained without using the logarithmic basis function but is still considerably off in magnitude compared with the experimental measurement of JHD = +43 0 ± 0.5 cps.
Resumo:
The objective of this investigation has been a theoretical and experimental understanding of ferromagnetic resonance phenomena in ferromagnetic thin films, and a consequent understanding of several important physical properties of these films. Significant results have been obtained by ferromagnetic resonance, hysteresis, torque magnetometer, He ion backscattering, and X-ray fluorescence measurements for nickel-iron alloy films.
Taking into account all relevant magnetic fields, including the applied, demagnetizing, effective anisotropy and exchange fields, the spin wave resonance condition applicable to the thin film geometry is presented. On the basis of the simple exchange interaction model it is concluded that the normal resonance modes of an ideal film are expected to be unpinned. The possibility of nonideality near the surface of a real film was considered by means of surface anisotropy field, inhomogeneity in demagnetizing field and inhomogeneity of magnetization models. Numerical results obtained for reasonable parameters in all cases show that they negligibly perturb the resonance fields and the higher order mode shapes from those of the unpinned modes of ideal films for thicknesses greater than 1000 Å. On the other hand for films thinner than 1000 Å the resonance field deviations can be significant even though the modes are very nearly unpinned. A previously unnoticed but important feature of all three models is that the interpretation of the first resonance mode as the uniform mode of an ideal film allows an accurate measurement of the average effective demagnetizing field over the film volume. Furthermore, it is demonstrated that it is possible to choose parameters which give indistinguishable predictions for all three models, making it difficult to uniquely ascertain the source of spin pinning in real films from resonance measurements alone.
Spin wave resonance measurements of 81% Ni-19% Fe coevaporated films 30 to 9000 Å thick, at frequencies from 1 to 8 GHz, at room temperature, and with the static magnetic field parallel and perpendicular to the film plane have been performed. A self-consistent analysis of the results for films thicker than 1000 Å, in which multiple excitations can be observed, shows for the first time that a unique value of exchange constant A can only be obtained by the use of unpinned mode assignments. This evidence and the resonance behavior of films thinner than 1000 Å strongly imply that the magnetization at the surfaces of permalloy films is very weakly pinned. However, resonance measurements alone cannot determine whether this pinning is due to a surface anisotropy, an inhomogeneous demagnetizing field or an inhomogeneous magnetization. The above analysis yields a value of 4πM=10,100 Oe and A = (1.03 ± .05) x 10-6 erg/cm for this alloy. The ability to obtain a unique value of A suggests that spin wave resonance can be used to accurately characterize the exchange interaction in a ferromagnet.
In an effort to resolve the ambiguity of the source of pinning of the magnetization, a correlation of the ratio of magnetic moment and X-ray film thickness with the value of effective demagnetizing field 4πNM as determined from resonance, for films 45 to 300 Å has been performed. The remarkable agreement of both quantities and a comparison with the predictions of five distinct models, strongly imply that the thickness dependence of both quantities is related to a thickness dependent average saturation magnetization, which is far below 10,100 Oe for very thin films. However, a series of complementary experiments shows that this large decrease of average saturation magnetization cannot be simply explained by either oxidation or interdiffusion processes. It can only be satisfactorily explained by an intrinsic decrease of the average saturation magnetization for very thin films, an effect which cannot be justified by any simple physical considerations.
Recognizing that this decrease of average saturation magnetization could be due to an oxidation process, a correlation of resonance measurements, He ion backscattering, X-ray fluorescence and torque magnetometer measurements, for films 40 to 3500 Å thick has been performed. On basis of these measurements it is unambiguously established that the oxide layer on the surface of purposefully oxidized 81% Ni-19% Fe evaporated films is predominantly Fe-oxide, and that in the oxidation process Fe atoms are removed from the bulk of the film to depths of thousands of angstroms. Extrapolation of results for pure Fe films indicates that the oxide is most likely α-Fe2O3. These conclusions are in agreement with results from old metallurgical studies of high temperature oxidation of bulk Fe and Ni-Fe alloys. However, X-ray fluorescence results for films oxidized at room temperature, show that although the preferential oxidation of Fe also takes place in these films, the extent of this process is by far too small to explain the large variation of their average saturation magnetization with film thickness.
Resumo:
Three kinds of new nickel(II) complexes of alpha-isoxazolylazo-beta-diketones with blue-violet light absorption were synthesized. Their structures were postulated based on elemental analysis, MS and FT-IR spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. The absorption properties and thermal stability of these complexes were discussed. The static optical recording test for high density digital versatile disc-recordable (HD-DVD-R) system was also studied. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A kind of 1,6,10,15,19,24,28,33-octa-iso-pentyloxy-2,3-metallonaphthalocyanines complexes MNc(iso-PeO)(8) (M = Co, Cu, Pd) are used as spincoating film-forming materials. The surface morphologies of the films prepared were studied first. These films were then used for the experiments of NO2 sensing. The effects of sensing temperature as well as the NO concentration on the sensing properties were studied. The experimental results showed that the three MNc(iso-PeO)(8) films were uniform, smooth and dense. Due to the different metal ions (M) on the center of naphthalocyanine, the CoNc(iso-PeO)(8) film had a higher film resistance and response-recovery rate in the NO2 sensing experiments. On the contrary, the response to NO2 of the PdNc(iso-PeO)(8) and CuNc(iso-PeO)(8) films were superior to that of CoNc(iso-PeO)(8). By varying the sensing temperature, it was found that the elevation of sensing temperature could improve the sensing response, recovery ratio, and sensitivity of the sensing films. At high concentrations of NO2, the response time became shorter. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Smooth thin films of three kinds of nickel(II)-azo complexes were prepared by the spin-coating method. Absorption spectra of the thin films on K9 glass substrate in the 300-600 nn wavelength region were measured. Optical constants (complex refractive index N = n + ik) and thickness of the thin films prepared on single-crystal silicon substrate in the 300-600 nm wavelength region were investigated on rotating analyzer-polarizer type of scanning ellipsometer, and dielectric constants epsilon (epsilon = epsilon(1) + i epsilon(2)), absorption coefficients a as well as reflectance R of thin films were then calculated at 405 nm. In addition, in order to examine the possible use of nickel(II)-azo complex thin film as an optical recording medium, one of the nickel(II)-azo complex thin film prepared on K9 glass substrate with an Ag reflective layer was also studied by atomic force microscopy and static optical recording. The results show that the nickel(II)-azo complex thin film is smooth and has a root mean square surface roughness of 2.25 nm, and the recording marks on the nickel(II)-azo complex thin film are very clear and circular, and their size can reach 200 nn or less. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Spin-coated films of nickel 1,6,10,15,19,24,28,33-octa-iso-pentyloxy-2,3-naphthalocyanine complex were obtained and characterized by UV-vis absorption spectroscopy. A linear relationship between the absorbance and solution concentration was observed. Low concentration solutions could afford smooth and homogeneous film surfaces as indicated by atomic force microscopy. The film structure was studied by small angle X-ray diffraction. The films were used for NO2 sensing experiments. The results indicate that the elevation of sensing temperature can shorten the response time and increase recovery ratio and response magnitude of the sensing films. High NO2 concentration can also shorten response time. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Three kinds of rare earth complexes derived from dibenzoylmethane (DBM) ligand were synthesized by reacting free ligand and different rare earth ions(La (3+), Sm3+ and Gd3+). Their contents and structures were postulated based on elemental analysis, LDI-TOF-MS, FT-IR spectra and UV-Vis spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. Their solubility in organic solvents, absorption and reflection properties of thin film and thermal stability of these complexes were evaluated. These complexes would be a promising recording material for high-density digital versatile disc-recordable (HD-DVD-R) system. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Spin information processing is a possible new paradigm for post-CMOS (complementary metal-oxide semiconductor) electronics and efficient spin propagation over long distances is fundamental to this vision. However, despite several decades of intense research, a suitable platform is still wanting. We report here on highly efficient spin transport in two-terminal polarizer/analyser devices based on high-mobility epitaxial graphene grown on silicon carbide. Taking advantage of high-impedance injecting/detecting tunnel junctions, we show spin transport efficiencies up to 75%, spin signals in the mega-ohm range and spin diffusion lengths exceeding 100μm. This enables spintronics in complex structures: devices and network architectures relying on spin information processing, well beyond present spintronics applications, can now be foreseen. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
The oxygen vacancy has been inferred to be the critical defect in HfO 2, responsible for charge trapping, gate threshold voltage instability, and Fermi level pinning for high work function gates, but it has never been conclusively identified. Here, the electron spin resonance g tensor parameters of the oxygen vacancy are calculated, using methods that do not over-estimate the delocalization of the defect wave function, to be g xx = 1.918, g yy = 1.926, g zz = 1.944, and are consistent with an observed spectrum. The defect undergoes a symmetry lowering polaron distortion to be localized mainly on a single adjacent Hf ion. © 2012 American Institute of Physics.
Resumo:
A high performance ferroelectric non-volatile memory device based on a top-gate ZnO nanowire (NW) transistor fabricated on a glass substrate is demonstrated. The ZnO NW channel was spin-coated with a poly (vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) layer acting as a top-gate dielectric without buffer layer. Electrical conductance modulation and memory hysteresis are achieved by a gate electric field induced reversible electrical polarization switching of the P(VDF-TrFE) thin film. Furthermore, the fabricated device exhibits a memory window of ∼16.5 V, a high drain current on/off ratio of ∼105, a gate leakage current below ∼300 pA, and excellent retention characteristics for over 104 s. © 2014 AIP Publishing LLC.
Resumo:
The temperature dependence of hole spin relaxation time in both neutral and n-doped ultrathin InAs monolayers has been investigated. It has been suggested that D'yakonov-Perel (DP) mechanism dominates the spin relaxation process at both low and high temperature regimes. The appearance of a peak in temperature dependent spin relaxation time reveals the important contribution of Coulomb scatterings between carriers to the spin kinetics at low temperature, though electron-phonon scattering becomes dominant at higher temperatures. Increased electron screening effect in the n-doped sample has been suggested to account for the shortened spin relaxation time compared with the undoped one. The results suggest that hole spins are also promising for building solid-state qubits.
Resumo:
An analytical model for the spin filtering transport in a ferromagnetic-metal - Al2O3 - n-type semiconductor tunneling structure has been developed, and demonstrated that the ratio of the helicity-modulated photo-response to the chopped one is proportional to the sum of the relative asymmetry in conductance of two opposite spin-polarized tunneling channels and the MCD effect of the ferromagnetic metal film. The performed measurement in an iron-metal/Al2O3/n-type GaAs tunneling structure under the optical spin orientation has verified that all the aspects of the experimental results are very well in accordance with our model in the regime of the spin filtering. After the MCD effect of the iron film is calibrated by an independent measurement, the physical quantity of Delta G(t)/G(t) (Delta G(t) = G(t)(up arrow) - G(t)(down arrow) is the difference of the conductance between two opposite spin tunneling channels, G(t) =( G(t)(up arrow) + G(t)(down arrow))/2 the averaged tunneling conductance), which concerns us most, can be determined quantitatively with a high sensitivity in the framework of our analytical model. Copyright (c) EPLA, 2008.
Resumo:
We report on the investigation of electron spin quantum beats at room temperature in GaAsN thin films by time-resolved Kerr rotation technique. The measurement of the quantum beats, which originate from the Larmor precession of electron spins in external transverse magnetic field, yields an accurate determination of the conduction electron g factor. We show that the g factor of GaAs1-xNx thin films is significantly changed by the introduction of a small nitrogen fraction.