757 resultados para HDL Function
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The mapping of the Wigner distribution function (WDF) for a given bound state onto a semiclassical distribution function (SDF) satisfying the Liouville equation introduced previously by us is applied to the ground state of the Morse oscillator. The purpose of the present work is to obtain values of the potential parameters represented by the number of levels in the case of the Morse oscillator, for which the SDF becomes a faithful approximation of the corresponding WDF. We find that for a Morse oscillator with one level only, the agreement between the WDF and the mapped SDF is very poor but for a Morse oscillator of ten levels it becomes satisfactory. We also discuss the limit h --> 0 for fixed potential parameters.
Resumo:
A Wigner function associated with the Rogers-Szego polynomials is proposed and its properties are discussed. It is shown that from such a Wigner function it is possible to obtain well-behaved probability distribution functions for both angle and action variables, defined on the compact support -pi less than or equal to theta < pi, and for m greater than or equal to 0, respectively. The width of the angle probability density is governed by the free parameter q characterizing the polynomials.
Resumo:
By considering a statistical model for the quark content of the nucleon, where the quark levels are generated by a Dirac equation with a harmonic scalar-plus-vector potential, we note that a good fit for the ratio between the structure functions of the neutron and proton, F-2(n)/F-2(p), can be obtained if different strengths are used for the effective confining potentials of the up and down quarks.
Time evolution of the Wigner function in discrete quantum phase space for a soluble quasi-spin model
Resumo:
The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wi:ner function is written for some chosen states associated to discrete angle and angular momentum variables, and the rime evolution is numerically calculated using the discrete von Neumnnn-Liouville equation. Direct evidences in the lime evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with a SU(2)-based semiclassical continuous approach to the Lipkin model is also presented.
Resumo:
Expressions for the Baker-Akhiezer function and their logarithmic space and time derivatives are derived in terms of the matrix elements of U - V matrices and 'squared basis functions'. These expressions generalize the well known formulas for the KdV equation case and establish links between different forms of the Whitham averaging procedure.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Within a QCD-based eikonal model with a dynamical infrared gluon mass scale we discuss how the small x behavior of the gluon distribution function at moderate Q(2) is directly related to the rise of total hadronic cross-sections. In this model the rise of total cross-sections is driven by gluon-gluon semihard scattering processes, where the behavior of the small x gluon distribtuion function exhibits the power law xg(x, Q(2)) = h(Q(2))x(-epsilon). Assuming that the Q(2) scale is proportional to the dynamical gluon mass one, we show that the values of h(Q(2)) obtained in this model are compatible with an earlier result based on a specific nonperturbative Pomeron model. We discuss the implications of this picture for the behavior of input valence-like gluon distributions at low resolution scales.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)