889 resultados para Grouted MacadamsMining wasteGeopolymersBuilding energy savingsITSM and Compressive Strength
Resumo:
This paper presents the security evaluation, energy consumption optimization, and spectrum scarcity analysis of artificial noise techniques to increase physical-layer security in Cognitive Wireless Sensor Networks (CWSNs). These techniques introduce noise into the spectrum in order to hide real information. Nevertheless, they directly affect two important parameters in Cognitive Wireless Sensor Networks (CWSNs), energy consumption and spectrum utilization. Both are affected because the number of packets transmitted by the network and the active period of the nodes increase. Security evaluation demonstrates that these techniques are effective against eavesdropper attacks, but also optimization allows for the implementation of these approaches in low-resource networks such as Cognitive Wireless Sensor Networks. In this work, the scenario is formally modeled and the optimization according to the simulation results and the impact analysis over the frequency spectrum are presented.
Resumo:
Remote reprogramming capabilities are one of the major concerns in WSN platforms due to the limitations and constraints that low power wireless nodes poses, especially when energy efficiency during the reprogramming process is a critical factor for extending the battery life of the devices. Moreover, WSNs are based on low-rate protocols in which as greater the amount of data is sent, the more the possibility to lose packets during the transmitting process is. In order to overcome these limitations, in this work a novel on-the-fly reprogramming technique for modifying and updating the application running on the wireless sensor nodes is designed and implemented, based on a partial reprogramming mechanism that significantly reduces the size of the files to be downloaded to the nodes, therefore diminishing their power/time consumption. This powerful mechanism also addresses multi-experimental capabilities because it provides the possibility to download, manage, test and debug multiple applications into the wireless nodes, based on a memory map segmentation of the core. Being an on-the-fly reprogramming process, no additional resources to store and download the configuration file are needed.
Resumo:
En los últimos años, las sociedades industrializadas han tomado una mayor conciencia sobre el problema que suponen las emisiones indiscriminadas de gases de efecto invernadero a la atmósfera. El hormigón, cuyo principal componente es el cemento, es probablemente el material más utilizado en construcción. En la actualidad, las emisiones globales de CO2 debidas a la combustión del CaCO3 del cemento Pórtland representan entre el 5% y el 10% respecto del total. Estos valores son de gran interés si se considera que el compromiso aceptado al firmar el Protocolo de Kioto es de una reducción del 5% antes del año 2020, sobre el total de gases producidos. El principal objetivo del presente trabajo es el estudio microestructural y de los procesos de hidratación de los cementos con adiciones. Para ello se propone contribuir a la investigación sobre nuevos productos cementicios basados en micropartículas esféricas vítreas que pueden adicionarse al cemento antes del proceso de amasado. Los resultados obtenidos se han contrastado con las adiciones convencionales de más uso en la actualidad. El nuevo material basa su composición en la química del aluminio y el silicio. Al disminuir la cantidad de CaCO3, se contribuye al desarrollo sostenible y a la reducción de emisiones de CO2. La patente creada por el Grupo Cementos Pórtland Valderrivas (GCPV), describe el proceso de producción de las cemesferas (WO 2009/007470, 2010). Los productos que forman la materia prima para la elaboración de las cemesferas son arcillas, calizas, margas o productos o subproductos industriales, que tras su molienda, son fundidos mediante un fluido gaseoso a elevada temperatura (entre 1250ºC y 1600ºC). Este proceso permite obtener un producto final en forma esférica maciza o microesfera, que tras estabilizarse mediante un enfriamiento rápido, consigue una alta vitrificación idónea para su reactividad química, con una mínima superficie específica en relación a su masa. El producto final obtenido presenta prácticamente la finura requerida y no precisa ser molido, lo que reduce las emisiones de CO2 por el ahorro de combustible durante el proceso de molienda. El proceso descrito permite obtener un amplio abanico de materiales cementantes que, no solo pueden dar respuesta a los problemas generados por las emisiones de CO2, sino también a la disponibilidad de materiales en países donde hasta el momento no se puede fabricar cemento debido a la falta de calizas. Complementariamente se ha optimizado el método de cálculo del grado de hidratación a partir de los resultados del ensayo de ATD-TG en base a los modelos de cálculo de Bhatty y Pane. El método propuesto permite interpretar el comportamiento futuro del material a partir de la interpolación numérica de la cantidad de agua químicamente enlazada. La evolución del grado de hidratación tiene una relación directa con el desarrollo de la resistencia mecánica del material. Con el fin de caracterizar los materiales de base cemento, se ha llevado a cabo una amplia campaña experimental en pasta de cemento, mortero y hormigón. La investigación abarca tres niveles: caracterización microestructural, macroestructural y caracterización del comportamiento a largo plazo, fundamentalmente durabilidad. En total se han evaluado ocho adiciones diferentes: cuatro adiciones convencionales y cuatro tipos de cemesferas con diferente composición química. Los ensayos a escala microscópica comprenden la caracterización química, granulométrica y de la superficie específica BET de los materiales anhidros, análisis térmico diferencial y termogravimétrico en pasta de cemento y mortero, resonancia magnética de silicio en pasta de cemento, difracción de rayos X de los materiales anhidros y de las probetas de pasta, microscopía electrónica de barrido con analizador de energía dispersiva por rayos X en pasta y mortero, y porosimetría por intrusión de mercurio en mortero. La caracterización macroscópica del material comprende ensayos de determinación del agua de consistencia normal y de los tiempos de inicio y fin de fraguado en pasta de cemento, ensayos de resistencia mecánica a flexión y compresión en probetas prismáticas de mortero, y ensayos de resistencia a compresión en probetas de hormigón. Para caracterizar la durabilidad se han desarrollado ensayos de determinación del coeficiente de migración de cloruros y ensayos de resistividad eléctrica en probetas de mortero. Todos los ensayos enumerados permiten clarificar el comportamiento de las cemesferas y compararlo con las distintas adiciones de uso convencional. Los resultados reflejan un buen comportamiento resistente y durable de los materiales con adición de cemesferas. La caracterización microscópica refleja su relación con las propiedades mesoscópicas y permite comprender mejor la evolución en los procesos de hidratación de las cemesferas. In recent years industrialised societies have become increasingly aware of the problem posed by indiscriminate emission of greenhouse gases into the atmosphere. Concrete, with a main component being cement, is arguably the most widely used construction material. At present, global emissions of CO2 due to the combustion of CaCO3 from Portland cement represent between 5% and 10% of the total. If the requirement of the Kyoto Protocol of a reduction of 5% of the total gas produced before 2020 is considered, then such values are of significant interest. The main objective of this work is the assessment of the microstructure and the hydration processes of cements with additions. Such an examination proposes research into new cementitious products based on vitreous spherical microparticles that may be added to the cement before the mixing process. The results are compared with the most commonly used conventional additions. The new material bases its composition on the chemistry of aluminium and silicates. By decreasing the amount of CaCO3, it is possible both to contribute to sustainable development and reduce CO2 emissions. The patent created by Grupo Cementos Portland Valderrivas (GCPV) describes the production process of microspheres (WO 2009/007470, 2010). The products that form the raw material for manufacture are clays, lime-stone, marl and industrial products or by-products that melt after being ground and fed into a gaseous fluid at high temperatures (1250°C and 1600°C). This process allows the obtaining of a product with a solid-spherical or micro-spherical shape and which, after being stabilised in a solid state by rapid cooling, obtains a high vitrification suitable for chemical reactivity, having a minimal surface in relation to its mass. Given that the final product has the fineness required, it prevents grinding that reduces CO2 emissions by saving fuel during this process. The process, which allows a wide range of cementitious materials to be obtained, not only addresses the problems caused by CO2 emissions but also enhances the availability of materials in countries that until the time of writing have not produced cement due to a lack of limestone. In addition, the calculation of the degree of hydration from the test results of DTA-TG is optimised and based on Bhatty and Pane calculation models. The proposed method allows prediction of the performance of the material from numerical interpolation of the amount of chemically bound water. The degree of hydration has a direct relationship with the development of material mechanical strength. In order to characterise the cement-based materials, an extensive experimental campaign in cement paste, concrete and mortar is conducted. The research comprises three levels: micro-structural characterisation, macro-structural and long-term behaviour (mainly durability). In total, eight additions are assessed: four conventional additions and four types of microspheres with different chemical compositions. The micro-scale tests include characterisation of chemical composition, particle size distribution and the BET specific surface area of anhydrous material, differential thermal and thermogravimetric analysis in cement paste and mortar, silicon-29 nuclear magnetic resonance in cement paste, X-ray diffraction of the anhydrous materials and paste specimens, scanning of electron microscopy with energy dispersive X-ray analyser in cement paste and mortar, and mercury intrusion porosimetry in mortar. The macroscopic material characterisation entails determination of water demand for normal consistency, and initial and final setting times of cement paste, flexural and compressive mechanical strength tests in prismatic mortar specimens, and compressive strength tests in concrete specimens. Tests for determining the chloride migration coefficient are performed to characterise durability, together with electrical resistivity tests in mortar specimens. All the tests listed allow clarification of the behaviour of the microspheres and comparison with the various additions of conventional use. The results show good resistance and durable behaviour of materials with a microsphere addition. Microscopic characterisation reflects their relationship with mesoscopic properties and provides insights into the hydration processes of the microspheres.
Resumo:
The Smartcity Málaga project is one of Europe?s largest ecoefficient city initiatives. The project has implemented a field trial in 50 households to study the effects of energy monitoring and management technologies on the residential electricity consumption. This poster presents some lessons learned on energy consumption trends, smart clamps reliability and the suitability of power contracted by users, obtained after six months of data analysis.
Resumo:
Current worldwide building legislation requirements aim to the design and construction of technical services that reduce energy consumption and improve indoor hygrothermal conditions. The retail sector in Spain, with a lot of outdated technical systems, demands energy conservation measures in order to reduce the increasingly electrical consumption for cooling. Climatic separation with modern air curtains and advanced hygrothermal control systems enables energy savings and can keep suitable indoor air temperature and humidity of stores with intense pedestrian traffic, especially when located in hot humid climates. As stated in the article, the energy savings in commercial buildings with these systems exceeds 30%
Resumo:
In recent years, the increasing sophistication of embedded multimedia systems and wireless communication technologies has promoted a widespread utilization of video streaming applications. It has been reported in 2013 that youngsters, aged between 13 and 24, spend around 16.7 hours a week watching online video through social media, business websites, and video streaming sites. Video applications have already been blended into people daily life. Traditionally, video streaming research has focused on performance improvement, namely throughput increase and response time reduction. However, most mobile devices are battery-powered, a technology that grows at a much slower pace than either multimedia or hardware developments. Since battery developments cannot satisfy expanding power demand of mobile devices, research interests on video applications technology has attracted more attention to achieve energy-efficient designs. How to efficiently use the limited battery energy budget becomes a major research challenge. In addition, next generation video standards impel to diversification and personalization. Therefore, it is desirable to have mechanisms to implement energy optimizations with greater flexibility and scalability. In this context, the main goal of this dissertation is to find an energy management and optimization mechanism to reduce the energy consumption of video decoders based on the idea of functional-oriented reconfiguration. System battery life is prolonged as the result of a trade-off between energy consumption and video quality. Functional-oriented reconfiguration takes advantage of the similarities among standards to build video decoders reconnecting existing functional units. If a feedback channel from the decoder to the encoder is available, the former can signal the latter changes in either the encoding parameters or the encoding algorithms for energy-saving adaption. The proposed energy optimization and management mechanism is carried out at the decoder end. This mechanism consists of an energy-aware manager, implemented as an additional block of the reconfiguration engine, an energy estimator, integrated into the decoder, and, if available, a feedback channel connected to the encoder end. The energy-aware manager checks the battery level, selects the new decoder description and signals to build a new decoder to the reconfiguration engine. It is worth noting that the analysis of the energy consumption is fundamental for the success of the energy management and optimization mechanism. In this thesis, an energy estimation method driven by platform event monitoring is proposed. In addition, an event filter is suggested to automate the selection of the most appropriate events that affect the energy consumption. At last, a detailed study on the influence of the training data on the model accuracy is presented. The modeling methodology of the energy estimator has been evaluated on different underlying platforms, single-core and multi-core, with different characteristics of workload. All the results show a good accuracy and low on-line computation overhead. The required modifications on the reconfiguration engine to implement the energy-aware manager have been assessed under different scenarios. The results indicate a possibility to lengthen the battery lifetime of the system in two different use-cases.
Resumo:
A real-time surveillance system for IP network cameras is presented. Motion, part-body, and whole-body detectors are efficiently combined to generate robust and fast detections, which feed multiple compressive trackers. The generated trajectories are then improved using a reidentification strategy for long term operation.
Resumo:
Fuel poverty can be defined as ‘the inability to afford adequate warmth in the home’ and it is the result of the combination of three factors: low household income, lack of energy efficiency and high energy bills. Within this context, the present research is aimed at characterizing, for the first time, the housing stock of fuel-poor households in the Autonomous Region of Madrid. Fuel poverty incidence was established and households were divided into six different groups according to their relative position regarding fuel and monetary poverty. The housing stock of each group is characterized and those households most in need are identified. These results enable energy retrofitting priorities to be established, focusing on the needs of the different household groups and accounting for their housing stock characteristics. This allows Spanish energy retrofitting policies to be assessed for their capability of tackling fuel poverty and makes it possible to suggest some improvements.
Resumo:
Resource analysis aims at inferring the cost of executing programs for any possible input, in terms of a given resource, such as the traditional execution steps, time ormemory, and, more recently energy consumption or user defined resources (e.g., number of bits sent over a socket, number of database accesses, number of calls to particular procedures, etc.). This is performed statically, i.e., without actually running the programs. Resource usage information is useful for a variety of optimization and verification applications, as well as for guiding software design. For example, programmers can use such information to choose different algorithmic solutions to a problem; program transformation systems can use cost information to choose between alternative transformations; parallelizing compilers can use cost estimates for granularity control, which tries to balance the overheads of task creation and manipulation against the benefits of parallelization. In this thesis we have significatively improved an existing prototype implementation for resource usage analysis based on abstract interpretation, addressing a number of relevant challenges and overcoming many limitations it presented. The goal of that prototype was to show the viability of casting the resource analysis as an abstract domain, and howit could overcome important limitations of the state-of-the-art resource usage analysis tools. For this purpose, it was implemented as an abstract domain in the abstract interpretation framework of the CiaoPP system, PLAI.We have improved both the design and implementation of the prototype, for eventually allowing an evolution of the tool to the industrial application level. The abstract operations of such tool heavily depend on the setting up and finding closed-form solutions of recurrence relations representing the resource usage behavior of program components and the whole program as well. While there exist many tools, such as Computer Algebra Systems (CAS) and libraries able to find closed-form solutions for some types of recurrences, none of them alone is able to handle all the types of recurrences arising during program analysis. In addition, there are some types of recurrences that cannot be solved by any existing tool. This clearly constitutes a bottleneck for this kind of resource usage analysis. Thus, one of the major challenges we have addressed in this thesis is the design and development of a novel modular framework for solving recurrence relations, able to combine and take advantage of the results of existing solvers. Additionally, we have developed and integrated into our novel solver a technique for finding upper-bound closed-form solutions of a special class of recurrence relations that arise during the analysis of programs with accumulating parameters. Finally, we have integrated the improved resource analysis into the CiaoPP general framework for resource usage verification, and specialized the framework for verifying energy consumption specifications of embedded imperative programs in a real application, showing the usefulness and practicality of the resulting tool.---ABSTRACT---El Análisis de recursos tiene como objetivo inferir el coste de la ejecución de programas para cualquier entrada posible, en términos de algún recurso determinado, como pasos de ejecución, tiempo o memoria, y, más recientemente, el consumo de energía o recursos definidos por el usuario (por ejemplo, número de bits enviados a través de un socket, el número de accesos a una base de datos, cantidad de llamadas a determinados procedimientos, etc.). Ello se realiza estáticamente, es decir, sin necesidad de ejecutar los programas. La información sobre el uso de recursos resulta muy útil para una gran variedad de aplicaciones de optimización y verificación de programas, así como para asistir en el diseño de los mismos. Por ejemplo, los programadores pueden utilizar dicha información para elegir diferentes soluciones algorítmicas a un problema; los sistemas de transformación de programas pueden utilizar la información de coste para elegir entre transformaciones alternativas; los compiladores paralelizantes pueden utilizar las estimaciones de coste para realizar control de granularidad, el cual trata de equilibrar el coste debido a la creación y gestión de tareas, con los beneficios de la paralelización. En esta tesis hemos mejorado de manera significativa la implementación de un prototipo existente para el análisis del uso de recursos basado en interpretación abstracta, abordando diversos desafíos relevantes y superando numerosas limitaciones que éste presentaba. El objetivo de dicho prototipo era mostrar la viabilidad de definir el análisis de recursos como un dominio abstracto, y cómo se podían superar las limitaciones de otras herramientas similares que constituyen el estado del arte. Para ello, se implementó como un dominio abstracto en el marco de interpretación abstracta presente en el sistema CiaoPP, PLAI. Hemos mejorado tanto el diseño como la implementación del mencionado prototipo para posibilitar su evolución hacia una herramienta utilizable en el ámbito industrial. Las operaciones abstractas de dicha herramienta dependen en gran medida de la generación, y posterior búsqueda de soluciones en forma cerrada, de relaciones recurrentes, las cuales modelizan el comportamiento, respecto al consumo de recursos, de los componentes del programa y del programa completo. Si bien existen actualmente muchas herramientas capaces de encontrar soluciones en forma cerrada para ciertos tipos de recurrencias, tales como Sistemas de Computación Algebraicos (CAS) y librerías de programación, ninguna de dichas herramientas es capaz de tratar, por sí sola, todos los tipos de recurrencias que surgen durante el análisis de recursos. Existen incluso recurrencias que no las puede resolver ninguna herramienta actual. Esto constituye claramente un cuello de botella para este tipo de análisis del uso de recursos. Por lo tanto, uno de los principales desafíos que hemos abordado en esta tesis es el diseño y desarrollo de un novedoso marco modular para la resolución de relaciones recurrentes, combinando y aprovechando los resultados de resolutores existentes. Además de ello, hemos desarrollado e integrado en nuestro nuevo resolutor una técnica para la obtención de cotas superiores en forma cerrada de una clase característica de relaciones recurrentes que surgen durante el análisis de programas lógicos con parámetros de acumulación. Finalmente, hemos integrado el nuevo análisis de recursos con el marco general para verificación de recursos de CiaoPP, y hemos instanciado dicho marco para la verificación de especificaciones sobre el consumo de energía de programas imperativas embarcados, mostrando la viabilidad y utilidad de la herramienta resultante en una aplicación real.
Resumo:
El actual contexto de fabricación, con incrementos en los precios de la energía, una creciente preocupación medioambiental y cambios continuos en los comportamientos de los consumidores, fomenta que los responsables prioricen la fabricación respetuosa con el medioambiente. El paradigma del Internet de las Cosas (IoT) promete incrementar la visibilidad y la atención prestada al consumo de energía gracias tanto a sensores como a medidores inteligentes en los niveles de máquina y de línea de producción. En consecuencia es posible y sencillo obtener datos de consumo de energía en tiempo real proveniente de los procesos de fabricación, pero además es posible analizarlos para incrementar su importancia en la toma de decisiones. Esta tesis pretende investigar cómo utilizar la adopción del Internet de las Cosas en el nivel de planta de producción, en procesos discretos, para incrementar la capacidad de uso de la información proveniente tanto de la energía como de la eficiencia energética. Para alcanzar este objetivo general, la investigación se ha dividido en cuatro sub-objetivos y la misma se ha desarrollado a lo largo de cuatro fases principales (en adelante estudios). El primer estudio de esta tesis, que se apoya sobre una revisión bibliográfica comprehensiva y sobre las aportaciones de expertos, define prácticas de gestión de la producción que son energéticamente eficientes y que se apoyan de un modo preeminente en la tecnología IoT. Este primer estudio también detalla los beneficios esperables al adoptar estas prácticas de gestión. Además, propugna un marco de referencia para permitir la integración de los datos que sobre el consumo energético se obtienen en el marco de las plataformas y sistemas de información de la compañía. Esto se lleva a cabo con el objetivo último de remarcar cómo estos datos pueden ser utilizados para apalancar decisiones en los niveles de procesos tanto tácticos como operativos. Segundo, considerando los precios de la energía como variables en el mercado intradiario y la disponibilidad de información detallada sobre el estado de las máquinas desde el punto de vista de consumo energético, el segundo estudio propone un modelo matemático para minimizar los costes del consumo de energía para la programación de asignaciones de una única máquina que deba atender a varios procesos de producción. Este modelo permite la toma de decisiones en el nivel de máquina para determinar los instantes de lanzamiento de cada trabajo de producción, los tiempos muertos, cuándo la máquina debe ser puesta en un estado de apagada, el momento adecuado para rearrancar, y para pararse, etc. Así, este modelo habilita al responsable de producción de implementar el esquema de producción menos costoso para cada turno de producción. En el tercer estudio esta investigación proporciona una metodología para ayudar a los responsables a implementar IoT en el nivel de los sistemas productivos. Se incluye un análisis del estado en que se encuentran los sistemas de gestión de energía y de producción en la factoría, así como también se proporcionan recomendaciones sobre procedimientos para implementar IoT para capturar y analizar los datos de consumo. Esta metodología ha sido validada en un estudio piloto, donde algunos indicadores clave de rendimiento (KPIs) han sido empleados para determinar la eficiencia energética. En el cuarto estudio el objetivo es introducir una vía para obtener visibilidad y relevancia a diferentes niveles de la energía consumida en los procesos de producción. El método propuesto permite que las factorías con procesos de producción discretos puedan determinar la energía consumida, el CO2 emitido o el coste de la energía consumida ya sea en cualquiera de los niveles: operación, producto o la orden de fabricación completa, siempre considerando las diferentes fuentes de energía y las fluctuaciones en los precios de la misma. Los resultados muestran que decisiones y prácticas de gestión para conseguir sistemas de producción energéticamente eficientes son posibles en virtud del Internet de las Cosas. También, con los resultados de esta tesis los responsables de la gestión energética en las compañías pueden plantearse una aproximación a la utilización del IoT desde un punto de vista de la obtención de beneficios, abordando aquellas prácticas de gestión energética que se encuentran más próximas al nivel de madurez de la factoría, a sus objetivos, al tipo de producción que desarrolla, etc. Así mismo esta tesis muestra que es posible obtener reducciones significativas de coste simplemente evitando los períodos de pico diario en el precio de la misma. Además la tesis permite identificar cómo el nivel de monitorización del consumo energético (es decir al nivel de máquina), el intervalo temporal, y el nivel del análisis de los datos son factores determinantes a la hora de localizar oportunidades para mejorar la eficiencia energética. Adicionalmente, la integración de datos de consumo energético en tiempo real con datos de producción (cuando existen altos niveles de estandarización en los procesos productivos y sus datos) es esencial para permitir que las factorías detallen la energía efectivamente consumida, su coste y CO2 emitido durante la producción de un producto o componente. Esto permite obtener una valiosa información a los gestores en el nivel decisor de la factoría así como a los consumidores y reguladores. ABSTRACT In today‘s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness of energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed, to improve energy-aware decision-making. This thesis aims to investigate how to utilize the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research is divided into four sub-objectives, and is accomplished during four main phases (i.e., studies). In the first study, by relying on a comprehensive literature review and on experts‘ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company‘s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second study proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle time, when the machine must be shut down, ―turning on‖ time, and ―turning off‖ time. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third study, the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate energy efficiency. In the fourth study, the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of the factory, target, production type, etc. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis determines the level of monitoring energy consumption (i.e., machine level), the interval time, and the level of energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when there are high levels of production process standardization data) is essential to enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted while producing a product, providing valuable information to decision makers at the factory level as well as to consumers and regulators.
Resumo:
A conceptual energy storage system design that utilizes ultra high temperature phase change materials is presented. In this system, the energy is stored in the form of latent heat and converted to electricity upon demand by TPV (thermophotovoltaic) cells. Silicon is considered in this study as PCM (phase change material) due to its extremely high latent heat (1800 J/g or 500 Wh/kg), melting point (1410 C), thermal conductivity (~25 W/mK), low cost (less than $2/kg or $4/kWh) and abundance on earth. The proposed system enables an enormous thermal energy storage density of ~1 MWh/m3, which is 10e20 times higher than that of lead-acid batteries, 2e6 times than that of Li-ion batteries and 5e10 times than that of the current state of the art LHTES systems utilized in CSP (concentrated solar power) applications. The discharge efficiency of the system is ultimately determined by the TPV converter, which theoretically can exceed 50%. However, realistic discharge efficiencies utilizing single junction TPV cells are in the range of 20e45%, depending on the semiconductor bandgap and quality, and the photon recycling efficiency. This concept has the potential to achieve output electric energy densities in the range of 200-450 kWhe/m3, which is comparable to the best performing state of the art Lithium-ion batteries.
Resumo:
En esta tesis se analiza el sistema de tracción de un vehículo eléctrico de batería desde el punto de vista de la eficiencia energética y de la exposición a campos magnéticos por parte de los pasajeros (radiación electromagnética). Este estudio incluye tanto el sistema de almacenamiento de energía como la máquina eléctrica, junto con la electrónica de potencia y los sistemas de control asociados a ambos. Los análisis y los resultados presentados en este texto están basados en modelos matemáticos, simulaciones por ordenador y ensayos experimentales a escala de laboratorio. La investigación llevada a cabo durante esta tesis tuvo siempre un marcado enfoque industrial, a pesar de estar desarrollada en un entorno de considerable carácter universitario. Las líneas de investigación acometidas tuvieron como destinatario final al diseñador y al fabricante del vehículo, a pesar de lo cual algunos de los resultados obtenidos son preliminares y/o excesivamente académicos para resultar de interés industrial. En el ámbito de la eficiencia energética, esta tesis estudia sistemas híbridos de almacenamiento de energía basados en una combinación de baterías de litio y supercondensadores. Este tipo de sistemas son analizados desde el punto de vista de la eficiencia mediante modelos matemáticos y simulaciones, cuantificando el impacto de ésta en otros parámetros tales como el envejecimiento de las baterías. Respecto a la máquina eléctrica, el estudio se ha centrado en máquinas síncronas de imanes permanentes. El análisis de la eficiencia considera tanto el diseño de la máquina como la estrategia de control, dejando parcialmente de lado el inversor y la técnica de modulación (que son incluidos en el estudio como fuentes adicionales de pérdidas, pero no como potenciales fuentes de optimización de la eficiencia). En este sentido, tanto la topología del inversor (trifásico, basado en IGBTs) como la técnica de modulación (control de corriente en banda de histéresis) se establecen desde el principio. El segundo aspecto estudiado en esta tesis es la exposición a campos magnéticos por parte de los pasajeros. Este tema se enfoca desde un punto de vista predictivo, y no desde un punto de vista de diagnóstico, puesto que se ha desarrollado una metodología para estimar el campo magnético generado por los dispositivos de potencia de un vehículo eléctrico. Esta metodología ha sido validada mediante ensayos de laboratorio. Otros aspectos importantes de esta contribución, además de la metodología en sí misma, son las consecuencias que se derivan de ella (por ejemplo, recomendaciones de diseño) y la comprensión del problema proporcionada por esta. Las principales contribuciones de esta tesis se listan a continuación: una recopilación de modelos de pérdidas correspondientes a la mayoría de dispositivos de potencia presentes en un vehículo eléctrico de batería, una metodología para analizar el funcionamiento de un sistema híbrido de almacenamiento de energía para aplicaciones de tracción, una explicación de cómo ponderar energéticamente los puntos de operación par-velocidad de un vehículo eléctrico (de utilidad para evaluar el rendimiento de una máquina eléctrica, por ejemplo), una propuesta de incluir un convertidor DC-DC en el sistema de tracción para minimizar las pérdidas globales del accionamiento (a pesar de las nuevas pérdidas introducidas por el propio DC-DC), una breve comparación entre dos tipos distintos de algoritmos de minimización de pérdidas para máquinas síncronas de imanes permanentes, una metodología predictiva para estimar la exposición a campos magnéticos por parte de los pasajeros de un vehículo eléctrico (debida a los equipos de potencia), y finalmente algunas conclusiones y recomendaciones de diseño respecto a dicha exposición a campos magnéticos. ABSTRACT This dissertation analyzes the powertrain of a battery electric vehicle, focusing on energy efficiency and passenger exposure to electromagnetic fields (electromagnetic radiation). This study comprises the energy storage system as well as the electric machine, along with their associated power electronics and control systems. The analysis and conclusions presented in this dissertation are based on mathematical models, computer simulations and laboratory scale tests. The research performed during this thesis was intended to be of industrial nature, despite being developed in a university. In this sense, the work described in this document was carried out thinking of both the designer and the manufacturer of the vehicle. However, some of the results obtained lack industrial readiness, and therefore they remain utterly academic. Regarding energy efficiency, hybrid energy storage systems consisting in lithium batteries, supercapacitors and up to two DC-DC power converters are considered. These kind of systems are analyzed by means of mathematical models and simulations from the energy efficiency point of view, quantifying its impact on other relevant aspects such as battery aging. Concerning the electric machine, permanent magnet synchronous machines are studied in this work. The energy efficiency analysis comprises the machine design and the control strategy, while the inverter and its modulation technique are taken into account but only as sources of further power losses, and not as potential sources for further efficiency optimization. In this sense, both the inverter topology (3-phase IGBT-based inverter) and the switching technique (hysteresis current control) are fixed from the beginning. The second aspect studied in this work is passenger exposure to magnetic fields. This topic is approached from the prediction point of view, rather than from the diagnosis point of view. In other words, a methodology to estimate the magnetic field generated by the power devices of an electric vehicle is proposed and analyzed in this dissertation. This methodology has been validated by laboratory tests. The most important aspects of this contribution, apart from the methodology itself, are the consequences (for instance, design guidelines) and the understanding of the magnetic radiation issue provided by it. The main contributions of this dissertation are listed next: a compilation of loss models for most of the power devices found in a battery electric vehicle powertrain, a simulation-based methodology to analyze hybrid energy storage performance in traction applications, an explanation of how to assign energy-based weights to different operating points in traction drives (useful when assessing electrical machine performance, for instance), a proposal to include one DC-DC converter in electric powertrains to minimize overall power losses in the system (despite the new losses added by the DC-DC), a brief comparison between two kinds of loss-minimization algorithms for permanent magnet synchronous machines in terms of adaptability and energy efficiency, a predictive methodology to estimate passenger magnetic field exposure due to power devices in an electric vehicle, and finally some useful conclusions and design guidelines concerning magnetic field exposure.
Resumo:
Although humanity depends on the continued, aggregate functioning of natural ecosystems, few studies have explored the impact of community structure on the stability of aggregate community properties. Here we derive the stability of the aggregate property of community biomass as a function of species’ competition coefficients for a two-species model. The model predicts that the stability of community biomass is relatively independent of the magnitude of the interaction strengths. Instead, the degree of asymmetry of the interactions appears to be key to community stability.
Resumo:
Peer reviewed
Resumo:
Peer reviewed