996 resultados para Groundwater chemistry
Resumo:
Ethylene gas is burnt to generate soot which is collected thermophoretically from different locations of the flame. Tribological performance of the collected soot in hexadecane suspension is compared with that of carbon black and diesel soot. The soots are analysed to yield a range of mechanical properties, physical structures and chemistry. The paper correlates these property variations with the corresponding variations in friction and wear when the soot suspended in hexadecane is used to lubricate a steel on steel sliding interaction. The particles are dispersed in hexadecane by a non-ionic surfactant, poly-isobutylene succinimide (PIBS), which is mono-functional with no free amine group. The grafting of the surfactant on the soot particles is found to have a profound effect on the dispersion of the soot, in general, while, between the different soot types, the tribology is differentiated by the physical structure and chemistry.
Resumo:
DNA is the chemotherapeutic target for treating diseases of genetic origin. Besides well-known double-helical structures (A, B, Z, parallel stranded-DNA etc.), DNA is capable of forming several multi-stranded structures (triplex, tetraplex, i-motif etc.) which have unique biological significance. The G-rich 3'-ends of chromosomes, called telomeres, are synthesized by telomerase, a ribonucleoprotein, and over-expression of telomerase is associated with cancer. The activity of telomerase is suppressed if the G-rich region is folded into the four stranded structures, called G-quadruplexes (G4-DNAs) using small synthetic ligands. Thus design and synthesis of new G4-DNA ligands is an attractive strategy to combat cancer. G4-DNA forming sequences are also prevalent in other genomic regions of biological significance including promoter regions of several oncogenes. Effective gene regulation may be achieved by inducing a G4-DNA structure within the G-rich promoter sequences. To date, several G4-DNA stabilizing ligands are known. DNA groove binders interact with the duplex B-DNA through the grooves (major and minor groove) in a sequence-specific manner. Some of the groove binders are known to stabilize the G4-DNA. However, this is a relatively under explored field of research. In this review, we focus on the recent advances in the understanding of the G4-DNA structures, particularly made from the human telomeric DNA stretches. We summarize the results of various investigations of the interaction of various organic ligands with the G4-DNA while highlighting the importance of groove binder-G4-DNA interactions.
Resumo:
Causal relationships existing between observed levels of groundwater in a semi-arid sub-basin of the Kabini River basin (Karnataka state, India) are investigated in this study. A Vector Auto Regressive model is used for this purpose. Its structure is built on an upstream/downstream interaction network based on observed hydro-physical properties. Exogenous climatic forcing is used as an input based on cumulated rainfall departure. Optimal models are obtained thanks to a trial approach and are used as a proxy of the dynamics to derive causal networks. It appears to be an interesting tool for analysing the causal relationships existing inside the basin. The causal network reveals 3 main regions: the Northeastern part of the Gundal basin is closely coupled to the outlet dynamics. The Northwestern part is mainly controlled by the climatic forcing and only marginally linked to the outlet dynamic. Finally, the upper part of the basin plays as a forcing rather than a coupling with the lower part of the basin allowing for a separate analysis of this local behaviour. The analysis also reveals differential time scales at work inside the basin when comparing upstream oriented with downstream oriented causalities. In the upper part of the basin, time delays are close to 2 months in the upward direction and lower than 1 month in the downward direction. These time scales are likely to be good indicators of the hydraulic response time of the basin which is a parameter usually difficult to estimate practically. This suggests that, at the sub-basin scale, intra-annual time scales would be more relevant scales for analysing or modelling tropical basin dynamics in hard rock (granitic and gneissic) aquifers ubiquitous in south India. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
In submitted research; nanocrystalline powders having elements Ni0.5Cu0.25Zn0.25Fe2 xInxO4 with varied amounts of indium ( x = 0.0, 0.1, 0.2, 0.3 and 0.4) were grown-up by modified citrate to nitrate alchemy. The realism of single phase cubic spinel creation of the synthesized ferrite samples was studied by the DTA-TGA, XRD, SEM, EDX, FT-IR, VSM and dielectric measurements. SEM was applied to inspect the morphological variations and EDX was used to determine the compositional mass ratios. The studies on the dielectric constant (epsilon'), dielectric loss (epsilon `'), loss tangent (tan delta), ac conductivity (sigma(ac)), resistive and reactive parts of the impedance analysis (Z' and Z `') at room temperature were also carried out. The saturation magnetizations (Ms) were determined using the vibrating sample magnetometer (VSM). Ms. decreased with the increase In3+ doping content, as Fe3+ of 5(mu B) ions are replaced by In3+ of 5 mu(B) ions. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Recently nano scale zero valent iron particles (nZVI) have been considered as smart adsorbent for environmental and groundwater remediation. Although several synthetic methods are available for the preparation of nZVI, air stable nZVI are not available for remediation works. Further, challenges demand synthesis of nZVI without stabilizers and capping agents. A modified methodology for the synthesis of air stable nZVI has been developed without any capping agents and characterized by powder X-Ray Diffraction (XRD), Scanning Electron Microscopy Energy-dispersive X-Ray (SEM-EDS), Transmission Electron Microscopy (TEM) and X-Ray Photoelectron Spectroscopy (XPS). The results of the present study suggest that the synthetic nZVI are air-stable over a period of one year and consists of particles of 30-40 nm in diameter. Although a layer of less than 3 am thick oxide/hydroxide is observed by TEM and XPS, it appears to be due to oxidation of outer surface during analysis. Adsorption study has shown that the synthetic nZVI are more effective adsorbent than the commercial nZVI and can remove simultaneously arsenite As-III] and arsenate As-V] from water without prior reduction of As-V to As-III. The removal process is adsorptive rather than precipitative and the removal of As-III is greater than that of As-V.
Resumo:
Four dinuclear bis(mu-Cl) bridged copper(II) complexes, Cu-2(mu-Cl)(2)(L-X)(2)](ClO4)(2) (L-X = N,N-bis(3,5-dimethylpyrazole-1-yl)-methyl]benzylamine with X = H(1), OMe(2), Me(3) and Cl(4)), have been synthesized and characterized by the single crystal X-ray diffraction method. In these complexes, each copper(II) center is penta-coordinated with square-pyramidal geometry. In addition to the tridentate L-X ligand, a chloride ion occupies the last position of the square plane. This chloride ion is also bonded to the neighboring Cu(II) site in its axial position forming an SP-I dinuclear Cu(II) unit that exhibits small intramolecular ferromagnetic interactions and supported by DFT calculations. The complexes 1-3 exhibit methylmonooxygenase (pMMO) behaviour and oxidise 4-tert-butylcatechol (4-TBCH2) with molecular oxygen in MeOH or MeCN to 4-tert-butyl-benzoquinone (4-TBQ), 5-methoxy-4-tert-butyl-benzoquinone (5-MeO-4-TBQ) as the major products along with 6,6'-Bu-t-biphenyl-3,4,3',4'-tetraol and others as minor products. These are further confirmed by ESI- and FAB-mass analyses. A tentative catalytic cycle has been framed based on the mass spectral analysis of the products and DFT calculations on individual intermediates that are energetically feasible.
Resumo:
Ground management problems are typically solved by the simulation-optimization approach where complex numerical models are used to simulate the groundwater flow and/or contamination transport. These numerical models take a lot of time to solve the management problems and hence become computationally expensive. In this study, Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) models were developed and coupled for the management of groundwater of Dore river basin in France. The Analytic Element Method (AEM) based flow model was developed and used to generate the dataset for the training and testing of the ANN model. This developed ANN-PSO model was applied to minimize the pumping cost of the wells, including cost of the pipe line. The discharge and location of the pumping wells were taken as the decision variable and the ANN-PSO model was applied to find out the optimal location of the wells. The results of the ANN-PSO model are found similar to the results obtained by AEM-PSO model. The results show that the ANN model can reduce the computational burden significantly as it is able to analyze different scenarios, and the ANN-PSO model is capable of identifying the optimal location of wells efficiently.
Resumo:
Earlier studies have indicated that variability in size, surface texture and charge greatly influence the contaminant removal process in granular media. Based on surface characteristics of montmorillonite, it is anticipated that small addition of this clay would increase adhesion sites for bacterial growth and extracellular polymer production in the slow sand filter and thereby enhance its contaminant removal ability. Experiments were performed by permeating groundwater contaminated with pathogens (total coliform and E. Coli) and inorganic contaminants through the bentonite amended slow sand filter (BASSF). Surprisingly, the BASSF retained inorganic contaminants besides pathogens. Water-leach tests (pH of water leachate ranged from 2 to 9) with spent BASSF specimen indicated that the inorganic contaminants are irreversibly adsorbed to a large extent. It is considered that the combined effects of enhanced-organic matter mediated adhesion sites and increased hydraulic retention time enables the BASSF specimen to retain inorganic contaminants. It is envisaged that BASSF filters could find use in treating contaminated groundwater for potable needs at household and community level.
Resumo:
The Neoarchean layered anorthositic complex at Sittampundi in southern India is known for its chromitite layers that are mostly associated with anorthosite (An(90-100)). The chromitites contain FeAl-rich chromites concentrated in layers between amphibole-rich layers with a dominant mineralogy of amphibole-spinel-plagiocase+/-sapphirine. The chromite-rich layers contain only amphibole and plagioclase. Mineral compositions illustrated by X-ray composition maps and profiles show subtle chemical differences. The chrome spinels are of refractory grade with Cr2O3 and Al2O3 contents varying between 34-40 wt.% and 23-28 wt.%. The chromite compositions are noticeably different from those in layered igneous intrusions of the Bushveld-Stillwater type. The existence of original highly calcic plagioclase, FeAl-rich chromite, and magmatic amphibole is consistent with derivation from a parental magma of hydrous tholeiitic composition that was most likely generated in a supra-subduction zone arc setting. In terms of mineralogy and field relations, the Sittampundi chromitites are remarkably similar to anorthosite-hosted chromitites in the Neoarchean Fiskensset anorthositic complex, Greenland. We propose that the Sittampundi chromitites formed by partial melting of unusually aluminous harzburgite in a hydrated mantle wedge above a subduction zone. This melting process produced hydrous, aluminous basalt, which fractionated at depth to give rise to a variety of high-alumina basalt compositions from which the anorthositic complex with its cumulate chromite-rich and amphibole-rich layers formed within the magma chamber of a supra-subduction zone arc. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A series of fluoranthene derivatives (F1-F5) varied with nature and type of substituents were synthesized via Diels-Alder reaction followed by in situ decarbonylation. The solid state structures have been established through single crystal X-ray diffraction (XRD). The presence of extended conjugation and having two alkyloxy chains on phenyl rings induces flexibility to orient opposite to each other and interacts with another fluoranthene unit with weak pi-pi interactions and show unique supramolecular arrangements. The envisaged photophysical and DFT studies demonstrated that HOMO-LUMO levels were effectively tuned by different substituents with an optical band gap from 3.44 to 3.88 eV provoked to examine as sensitive fluorescent chemosensors for the detection of nitroaromatic compounds (NACs). The sensitivity toward the detection of NACs was evaluated through fluorescence quenching in solution (aqueous and non-aqueous) and solid state (vapor and contact mode). Fluorescence studies demonstrated that electron transfer occurs from the electron rich fluoranthene fluorophores to the electron deficient NACs by the dominant static quenching mechanism and the quenching process is reversible. It was found that the detection sensitivity increases with extent of conjugation on fluoranthene unit. The contact mode approach using thin layer silica chromatographic plates exhibits a femtogram (1.15 fg/cm(2)) detection limit for trinitrotoluene (TNT) and picric acid (PA), while the solution state fluorescence quenching shows for PA detection at the 2-20 ppb level. The sensing performance of fluoranthene thin films to NACs in aqueous solution reveals that fluorophores are highly selective towards the detection of PA. The smart performances of thin film fluorophores with high photostability have great advantage than those of conjugated polymers with superior sensitive detection of PA in groundwater.
Resumo:
Soot generated from the combustion process in diesel engines affect engine tribology. In this paper, two diesel soot samples; from engine exhaust and oil filter are suspended in hexadecane oil and the suspension is used to lubricate a steel ball on steel flat sliding contact at a contact pressure of 1.3 GPa. The friction and wear of the steel flat are recorded. The data are compared with those recorded when the soot is generated by burning ethylene gas. The rationale for the comparatively poor tribology of diesel soot is explored by quantifying the size and shape of primary particles and agglomerates, hardness of single primary soot particles, the crystallinity and surface and near surface chemistry of soot and interparticle adhesion.
Resumo:
Using continuous and near-real time measurements of the mass concentrations of black carbon (BC) aerosols near the surface, for a period of 1 year (from January to December 2006) from a network of eight observatories spread over different environments of India, a space-time synthesis is generated. The strong seasonal variations observed, with a winter high and summer low, are attributed to the combined effects of changes in synoptic air mass types, modulated strongly by the atmospheric boundary layer dynamics. Spatial distribution shows much higher BC concentration over the Indo-Gangetic Plain (IGP) than the peninsular Indian stations. These were examined against the simulations using two chemical transport models, GOCART (Goddard Global Ozone Chemistry Aerosol Radiation and Transport) and CHIMERE for the first time over Indian region. Both the model simulations significantly deviated from the measurements at all the stations; more so during the winter and pre-monsoon seasons and over mega cities. However, the CHIMERE model simulations show better agreement compared with the measurements. Notwithstanding this, both the models captured the temporal variations; at seasonal and subseasonal timescales and the natural variabilities (intra-seasonal oscillations) fairly well, especially at the off-equatorial stations. It is hypothesized that an improvement in the atmospheric boundary layer (ABL) parameterization scheme for tropical environment might lead to better results with GOCART.
Resumo:
In this work, we have prepared two donor-acceptor-donor (D-A-D) pi-conjugated oligomers to investigate the effect of phase separation on the performance of bulk heterojunction (BHJ) solar cells. These charge transfer low band gap pi-conjugated oligomers (TTB and NMeTTB) were synthesized by Knoevenagel condensation of terthiophenecarbaldehyde and barbiturate appended pyran derivative. The thin film morphology of both the oligomers and along with electron acceptor 6,6]-phenyl-C60-butyric acid methyl ester (PC61BM) was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The blend of NMeTTB and PC61BM thin film yield highly ordered thin film, whereas there was clear phase separation between TTB and PC61BM in thin film. The BHJ solar cell was fabricated using a blend of NMeTTB and TTB with PC61BM acceptor in 1:1 ratio as active layer, and a power conversion efficiency of 1.8% was obtained. This device characteristic was compared with device having TTB:PC61BM as active layer, and large difference is observed in photocurrents. This poor performance of TTB in BHJ devices was attributed to the difference in the nanoscale morphology of the corresponding derivatives. We rationalize our findings based on the low charge carrier mobility in organic field-effect transistors and miscibility/phase separation parameter of binary components (oligomers and PC61BM) in the active layer of bulk heterojunction solar cells.
Resumo:
Phase relations in the system Nb-Rh-O at 1223 K were investigated by isothermal equilibration of eleven compositions and analysis of quenched samples using OM, XRD, SEM and EDS. The oxide phase in equilibrium with the alloy changes progressively from NbO to NbO2, NbO2.422 and Nb2O5-x with increasing Rh. Only one ternary oxide NbRhO4 with tetragonal structure (a=0.4708 nm and c=0.3017 nm) was detected. It coexists with Rh and Nb2O5. The standard Gibbs energy of formation of NbRhO4 from its component binary oxides measured using a solid-state electrochemical cell can be represented by the equation; Delta G(f,ox)(o)(J/mol) = -38,350 + 5.818 x T(+/- 96) Constructed on the basis of thermodynamic information of the various alloy and oxide phases are oxygen potential diagram for the system Nb-Rh-O at 1223 K and temperature-composition diagrams at constant partial pressures of oxygen.