444 resultados para Grimm


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iam summa diligentia & cura depromptus in lucem

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alcance y contenido: Descripción: vista de paisaje inglés

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protoporphyrinogen IX oxidase is the last enzyme in the common pathway of heme and chlorophyll synthesis and provides precursor for the mitochondrial and plastidic heme synthesis and the predominant chlorophyll synthesis in plastids. We cloned two different, full-length tobacco cDNA sequences by complementation of the protoporphyrin-IX-accumulating Escherichia coli hemG mutant from heme auxotrophy. The two sequences show similarity to the recently published Arabidopsis PPOX, Bacillus subtilis hemY, and to mammalian sequences encoding protoporphyrinogen IX oxidase. One cDNA sequence encodes a 548-amino acid residues protein with a putative transit sequence of 50 amino acid residues, and the second cDNA encodes a protein of 504 amino acid residues. Both deduced protein sequences share 27.2% identical amino acid residues. The first in vitro translated protoporphyrinogen IX oxidase could be translocated to plastids, and the approximately 53-kDa mature protein was detected in stroma and membrane fraction. The second enzyme was targeted to mitochondria without any detectable reduction in size. Localization of both enzymes in subcellular fractions was immunologically confirmed. Steady-state RNA analysis indicates an almost synchronous expression of both genes during tobacco plant development, greening of young seedlings, and diurnal and circadian growth. The mature plastidal and the mitochondrial isoenzyme were overexpressed in E. coli. Bacterial extracts containing the recombinant mitochondrial enzyme exhibit high protoporphyrinogen IX oxidase activity relative to control strains, whereas the plastidal enzyme could only be expressed as an inactive peptide. The data presented confirm a compartmentalized pathway of tetrapyrrole synthesis with protoporphyrinogen IX oxidase in plastids and mitochondria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acknowledgements We are grateful to THERAmetrics for the study management, data collection and analysis. The authors would like to thank the following investigators for their contribution (>30 patients enrolled): F. Fohler, A.G. Haider, J. Hesse-Tonsa, J. Messner, W. Pohl (Austria); G. Joos, J.L. Halloy, R. Peche, H. Simonis, P. Van den Brande (Belgium); B. Bugnas, J.M. Chavaillon, P. Debove, S. Dury, L. Mathieu, O. Lagrange, A. Prudhomme, S. Verdier (France); A. Benedix, O. Kestermann, A. Deimling, G. Eckhardt, M. Gernhold, V. Grimm-Sachs, M. Hoefer, G. Hoheisel, C. Stolpe, C. Schilder, M. John, J. Uerscheln, K.H. Zeisler (Germany); A. Chaniotou, P. Demertzis, V. Filaditaki-Loverdou, A. Gaga, E. Georgatou-Papageorgiou, S. Michailidis, G. Pavkalou, M. Toumpis (Greece); K. Csicsari, K. Hajdu, M. Póczi, M. Kukuly, T. Kecskes, C. Hangonyi, J. Schlezak, E. Takács, M. Szabo,G. Szabó, C. Szabo (Hungary); G.W. Canonica, W. Castellani, A. Cirillo, M.P. Foschino Barbaro, M. Gjomarkaj, G. Guerra, G. Idotta, D. Legnani, M. Lo Schiavo, R. Maselli, F. Mazza, S. Nutini, P. Paggiaro, A. Pietra, O. Resta, S. Salis, N.A. Scichilone, M.C. Zappa, A. Zedda (Italy); M. Goosens, R. Heller, K. Mansour, C. Meek, J. van den Berg (The Netherlands); A. Antczak, M. Faber, D. Madra-Rogacka, G. Mincewicz, M. Michnar, D. Olejniczak, G. Pulka, Z. Sankowski, K. Kowal, I. Krupa-Borek, B. Kubicka Kozik, K. Kuczynska, P. Kuna, A. Kwasniewski, M. Wozniak (Poland); F. Casas Maldonado, C. Cisneros, J. de Miguel Díez, L.M. Entrenas Costa, B. Garcìa-Cosio, M.V. Gonzales, L. Lores, M. Luengo, C. Martinez, C. Melero, I. Mir, X. Munoz, A. Pacheco, V. Plaza, J. Serra, J. Serrano, J.G. Soto Campos (Spain); T. Bekci, R. Demir, N. Dursunoglu, D. Ediger, A. Ekici, O. Goksel, H. Gunen, I.K. Oguzulgen, Z.F. Ozseker, (Turkey); L. Barnes, T. Hall, S. Montgomerie, J. Purohit, J. Ryan (United Kingdom). The authors would also like to thank P. Galletti (THERAMetrics S.p.A., Sesto San Giovanni, Italy) and K. Stockmeyer (THERAMetrics GmbH, Essen, Germany) for providing editorial assistance in the preparation of this manuscript. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intracellular distribution of RNAs depends on interactions of cis-acting nuclear export elements or nuclear retention elements with trans-acting nuclear transport or retention factors. To learn about the relationship between export and retention, we isolated RNAs that are exported from nuclei of Xenopus laevis oocytes even when most RNA export is blocked by an inhibitor of Ran-dependent nucleocytoplasmic transport, the Matrix protein of vesicular stomatitis virus. Export of the selected RNAs is saturable and specific. When present in chimeric RNAs, the selected sequences acted like nuclear export elements in promoting efficient export of RNAs that otherwise are not exported; the pathway used for export of these chimeric RNAs is that used for the selected RNAs alone. However, these chimeric RNAs, unlike the selected RNAs, were not exported in the presence of Matrix protein; thus, the nonselected sequences can cause retention of the selected RNA sequences under conditions of impaired nucleocytoplasmic transport. We propose that most RNAs are transiently immobilized in the nucleus and that release of these RNAs is an essential and early step in export. Release correlates with functional Ran-dependent transport, and the lack of export of chimeric RNAs may result from interference with the Ran system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two RNases H of mammalian tissues have been described: RNase HI, the activity of which was found to rise during DNA replication, and RNase HII, which may be involved in transcription. RNase HI is the major mammalian enzyme representing around 85% of the total RNase H activity in the cell. By using highly purified calf thymus RNase HI we identified the sequences of several tryptic peptides. This information enabled us to determine the sequence of the cDNA coding for the large subunit of human RNase HI. The corresponding ORF of 897 nt defines a polypeptide of relative molecular mass of 33,367, which is in agreement with the molecular mass obtained earlier by SDS/PAGE. Expression of the cloned ORF in Escherichia coli leads to a polypeptide, which is specifically recognized by an antiserum raised against calf thymus RNase HI. Interestingly, the deduced amino acid sequence of this subunit of human RNase HI displays significant homology to RNase HII from E. coli, an enzyme of unknown function and previously judged as a minor activity. This finding suggests an evolutionary link between the mammalian RNases HI and the prokaryotic RNases HII. The idea of a mammalian RNase HI large subunit being a strongly conserved protein is substantiated by the existence of homologous ORFs in the genomes of other eukaryotes and of all eubacteria and archaebacteria that have been completely sequenced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three-dimensional structure of glutamate-1-semialdehyde aminomutase (EC 5.4.3.8), an α2-dimeric enzyme from Synechococcus, has been determined by x-ray crystallography using heavy atom derivative phasing. The structure, refined at 2.4-Å resolution to an R-factor of 18.7% and good stereochemistry, explains many of the enzyme’s unusual specificity and functional properties. The overall fold is that of aspartate aminotransferase and related B6 enzymes, but it also has specific features. The structure of the complex with gabaculine, a substrate analogue, shows unexpectedly that the substrate binding site involves residues from the N-terminal domain of the molecule, notably Arg-32. Glu-406 is suitably positioned to repel α-carboxylic acids, thereby suggesting a basis for the enzyme’s reaction specificity. The subunits show asymmetry in cofactor binding and in the mobilities of the residues 153–181. In the unliganded enzyme, one subunit has the cofactor bound as an aldimine of pyridoxal phosphate with Lys-273 and, in this subunit, residues 153–181 are disordered. In the other subunit in which the cofactor is not covalently bound, residues 153–181 are well defined. Consistent with the crystallographically demonstrated asymmetry, a form of the enzyme in which both subunits have pyridoxal phosphate bound to Lys-273 through a Schiff base showed biphasic reduction by borohydride in solution. Analysis of absorption spectra during reduction provided evidence of communication between the subunits. The crystal structure of the reduced form of the enzyme shows that, despite identical cofactor binding in each monomer, the structural asymmetry at residues 153–181 remains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mg-chelation is found to be a prerequisite to direct protoporphyrin IX into the chlorophyll (Chl)-synthesizing branch of the tetrapyrrol pathway. The ATP-dependent insertion of magnesium into protoporphyrin IX is catalyzed by the enzyme Mg-chelatase, which consists of three protein subunits (CHL D, CHL I, and CHL H). We have chosen the Mg-chelatase from tobacco to obtain more information about the mode of molecular action of this complex enzyme by elucidating the interactions in vitro and in vivo between the central subunit CHL D and subunits CHL I and CHL H. We dissected CHL D in defined peptide fragments and assayed for the essential part of CHL D for protein–protein interaction and enzyme activity. Surprisingly, only a small part of CHL D, i.e., 110 aa, was required for interaction with the partner subunits and maintenance of the enzyme activity. In addition, it could be demonstrated that CHL D is capable of forming homodimers. Moreover, it interacted with both CHL I and CHL H. Our data led to the outline of a two-step model based on the cooperation of the subunits for the chelation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed the antioxidative defense responses of transgenic tobacco (Nicotiana tabacum) plants expressing antisense RNA for uroporphyrinogen decarboxylase or coproporphyrinogen oxidase. These plants are characterized by necrotic leaf lesions resulting from the accumulation of potentially photosensitizing tetrapyrroles. Compared with control plants, the transformants had increased levels of antioxidant mRNAs, particularly those encoding superoxide dismutase (SOD), catalase, and glutathione peroxidase. These elevated transcript levels correlated with increased activities of cytosolic Cu/Zn-SOD and mitochondrial Mn-SOD. Total catalase activity decreased in the older leaves of the transformants to levels lower than in the wild-type plants, reflecting an enhanced turnover of this photosensitive enzyme. Most of the enzymes of the Halliwell-Asada pathway displayed increased activities in transgenic plants. Despite the elevated enzyme activities, the limited capacity of the antioxidative system was apparent from decreased levels of ascorbate and glutathione, as well as from necrotic leaf lesions and growth retardation. Our data demonstrate the induction of the enzymatic detoxifying defense system in several compartments, suggesting a photosensitization of the entire cell. It is proposed that the tetrapyrroles that initially accumulate in the plastids leak out into other cellular compartments, thereby necessitating the local detoxification of reactive oxygen species.